
Dynamical Model Learning and Inversion for
Aggressive Quadrotor Flight

Alexander E. Spitzer

CMU-RI-TR-22-03

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Nathan Michael (chair) CMU RI
Christopher Atkeson CMU RI
Changliu Liu CMU RI
Giuseppe Loianno NYU

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

December 2021

Copyright © 2021 Alexander Spitzer.
All rights reserved.

Abstract

Quadrotor applications have seen a surge recently and many tasks require precise and
accurate controls. Flying fast is critical in many applications and the limited onboard
power source makes completing tasks quickly even more important. Staying on a desired
course while traveling at high speeds and high accelerations is difficult due to complex
and stochastic aerodynamic effects, poorly modeled dynamics, and unreliable state es-
timation. This thesis seeks to design control strategies that enable quadrotors to track
aggressive trajectories precisely and accurately in the presence of external disturbances,
unmodeled dynamics, and imperfect state estimation. We first introduce a model learning
strategy that allows efficient compensation of learned acceleration disturbances using the
differential flatness paradigm. Then, we extend our learning approach to the feedback
linearization controller and show that feedback linearization is a viable strategy for ag-
gressive quadrotor flight. We also show that learning attitude dynamics models improves
attitude control loop performance, which in turn improves position trajectory tracking
performance. Finally, we validate our model learning approach in extensive outdoor
experiments at high speed, under realistic disturbance conditions, and with imperfect
state estimation.

2

Acknowledgements

First, I would like to thank my advisor, Nathan Michael, for taking a chance on me and
guiding and supporting me along this journey despite its many difficulties and setbacks.
I would like to thank my committee, Christopher Atkeson, Changliu Liu, and Giuseppe
Loianno, for their interest in my work and feedback along the way. Thank you Chris
Atkeson, for helping me always mind the big picture and inspiring me to ask challenging
questions. Thank you to Wen Sun for serving on my qualifying committee and his interest
and excitement about my work. Thank you to Christopher Batten, for encouraging me
to pursue a PhD and guiding me through the application process.

To all past and present members of RISLab, thank you for taking me in and providing
a source of community within the RI. I want to thank Vishnu Desaraju for guiding
me in my first year and trusting me with running his field experiments. Thank you to
Curtis Boirum, for his work on the lab hardware that was a key part of the results in
this thesis. Thank you to Yves Georgy Daoud and Xuning Yang, for helping me run
the outdoor field experiments. Aditya Dhawale, Arjav Desai, Cormac O’Meadhra, Curt,
Derek Mitchell, Ellen Cappo, John Yao, Kumar Shaurya Shankar, Kshitij Goel, Lauren
Lieu, Logan Ellis, Matt Collins, Micah Corah, Mike Lee, Mosam Dabhi, Moses Bangura,
Tabitha Lee, Vibhav Ganesh, Vishnu, Wennie Tabib, Xuning, and Yves, thank you for
being memorable labmates and making RISLab a fun and happy place to work.

To Rogerio Bonatti, Cherie Ho, Adithya Murali, Roberto Shu, Anirudh Vemula, Jerry
Hsiung, Leo Keselman, Ankit Bhatia, Cara Bloom, Thomas Weng, Jaskaran Grover,
Cecilia Morales, Azarakhsh Keipour, Ratnesh Madaan, Adam Harley, Brian Okorn, Ben
Newman, John Macdonald, Mark Lee, Allie Del Giorno, Shivam Vats, Shohin Mukherjee,
Paloma Sodhi, and many other friends from the RI, sincerely thank you for sharing the
journey with me.

To all my soccer friends and the RI D Stars: Kumar Shaurya Shankar, Roberto Shu, Tan-
may Shankar, Aditya Dhawale, Ginés Hidalgo, Chris Cunningham, Zach Batts, Dhruv
Saxena, Andrew Sywy, Moses Bangura, Jorge Anton, Karun Warrior, Jorge Izar, Jagjeet
Singh, Gabriel Vidal Álvarez, Yunsik Ohm, and any other teammate and opponent I’ve
been lucky to share the field with, thank you for providing endless fun, camaraderie, and
injuries.

And to all other colleagues and friends I have been fortunate to meet, thank you for
making my time in Pittsburgh very special. Thank you Chelsea, for your friendship,
positivity, and happiness.

To my friends Andrew, Noah, Einar, and Leo, thank you for the encouragement, support,
laughter, and fun trips. Thank you Andrew for all the fun chats and games.

Thank you Xuning, for your tremendous support, care, and unwavering dedication,
tirelessly fixing the robot after crashes, and encouraging me during dark times.

Finally, I’d like to thank my parents and sister for their endless love and support. This
thesis would not be possible without their dedication and sacrifices.

3

Contents

1 Introduction 12
1.1 What is Forward Model-based Control? 13
1.2 How is Tracking Error Handled? . 14
1.3 Challenges . 16
1.4 Contributions . 16
1.5 Outline . 17

2 Background 18
2.1 Modeling . 18

2.1.1 Note on Reference Frames . 18
2.1.2 Dynamics . 18
2.1.3 Motor Modeling . 20

2.2 Differential Flatness . 21
2.2.1 Yaw Definitions . 22
2.2.2 Flat Output to States and Control Inputs 25

2.2.2.1 Computing Orientation and Thrust 26
2.2.2.2 Computing Angular Velocity 27
2.2.2.3 Computing Angular Acceleration 28
2.2.2.4 Linear System Solution for Body Axis Rates 28

2.3 Feedback Control . 29
2.3.1 Cascaded Control Architecture 29
2.3.2 Attitude Control . 31

2.3.2.1 Rotational Error Functions 32
2.3.3 Model Predictive Controllers . 34

2.4 Disturbance Compensation . 35
2.4.1 Acceleration Disturbance Observer 35
2.4.2 Angular Acceleration Disturbance Observer 35

2.5 Linear Regression for Model Learning . 36
2.5.1 Linear Regression . 36
2.5.2 Linear Regression with Nonlinear Features 38
2.5.3 Incremental Linear Regression . 39

3 Inverting Learned Dynamics Models 40
3.1 Introduction . 40

3.1.1 Motivation . 40
3.1.2 Related Works . 41

3.2 Method . 43
3.2.1 Problem Statement . 43

4

Contents

3.2.2 Input-independent Error Compensation 44
3.2.3 Input-dependent Error Compensation 45
3.2.4 Model Learning . 47

3.3 Experiments . 47
3.3.1 Simulation . 47
3.3.2 Hardware . 51

3.3.2.1 Platform & Setup . 51
3.3.2.2 Model Learning . 53
3.3.2.3 Results . 53

3.4 Conclusion . 53

4 Model Learning for Feedback Linearization 57
4.1 Introduction . 57
4.2 Related Works . 59
4.3 Method . 60

4.3.1 Feedback Linearization with Dynamic Extension 60
4.3.2 Feedback Linearization with Thrust Delay and Disturbance Model 62

4.3.2.1 Computing Thrust Control Input 63
4.3.2.2 Computing Angular Acceleration Control Input 64

4.3.3 Gain Matching . 65
4.3.4 Acceleration Model Learning . 68

4.4 Experiments . 69
4.4.1 Position and Yaw Step Response 70
4.4.2 Control Input Delay . 70
4.4.3 Learned Acceleration Error Model 71
4.4.4 Iterative Learning Control Application 76

4.5 Conclusion . 79

5 Model Learning for Quadrotor Attitude Control 80
5.1 Introduction . 80

5.1.1 Problem . 80
5.1.2 Challenges . 80

5.1.2.1 Data . 80
5.1.2.2 Regression . 81

5.1.3 State of the Art . 81
5.1.4 Requirements . 81

5.2 Modeling . 81
5.2.1 Rotor Angular Momentum . 82
5.2.2 Control with Disturbance Model 82
5.2.3 Model Learning . 84

5.3 Experiments . 84
5.3.1 Baseline System Evaluation . 84

5.3.1.1 Filter with Acceleration Disturbance Compensation . . . 84
5.3.2 Flying in a Wind Field with Cardboard Plate 85

5.3.2.1 AAD Compensation with Acceleration Model Learning . 87

5

Contents

5.3.3 Flying with a Cardboard Plate 93
5.3.3.1 Feedforward Linearization for AAD Model 94

5.4 Conclusion . 94

6 Model Learning for High Speed Outdoor Flight 97
6.1 Quadrotor . 97
6.2 State Estimation . 99
6.3 Safety . 103
6.4 Experiments . 103
6.5 Trajectories . 104
6.6 Results . 105
6.7 Learned Model Analysis . 106
6.8 Conclusion . 111

7 Conclusion 115
7.1 Summary of Contributions . 115
7.2 Limitations and Future Work . 116

7.2.1 Learning Models . 116
7.2.2 Using Learned Models . 117
7.2.3 Future . 117

A Firmware and Attitude Estimation 119
A.1 System . 119
A.2 Sensing . 119

A.2.1 IMU Logging . 119
A.2.2 Notch Filtering . 122

A.2.2.1 Implementation . 123
A.2.2.2 Results . 124
A.2.2.3 Implications . 130

A.2.3 Gyro Bias Estimation . 135
A.2.4 Kalman Filter for Disturbance Estimation 136

A.2.4.1 Process Model . 138
A.2.4.2 Observation Model . 139
A.2.4.3 Algorithm . 139
A.2.4.4 Parameters . 139

A.2.5 Linear Acceleration Compensation 140

B Rotational Error Metric Case Studies 142
B.1 Introduction . 142
B.2 Full Rotation Metrics . 143
B.3 Thrust Vector – Yaw Decomposition Metrics 144
B.4 Simulation Case Studies . 145

B.4.1 Direction Change . 146
B.4.2 Step with Yaw Error . 147
B.4.3 Diagonal Step . 148

6

Contents

B.5 Discussion . 149

C Outdoor Trajectory Generation Details 150

D Feedback Linearization vs Feedforward Linearization 153
D.1 Related Works . 153
D.2 Outcomes . 154
D.3 Theory . 154

D.3.1 Cost Analysis . 155
D.3.2 Local Analysis . 155

7

List of Figures

1.1 Quadrotor applications where precise and accurate control is essential . . 12
1.2 High speed outdoor trajectory preview 16

2.1 Force diagram for the quadrotor . 20
2.2 A visualization of the Euler ZYX convention 23
2.3 A visualization of the Euler ZXY convention 23
2.4 The standard cascaded quadrotor controller architecture 30
2.5 Dataflow diagram of the attitude control system 31

3.1 Quadrotor following line and circle with acceleration model learning . . . 41
3.2 Force diagram of 2D quadrotor used in simulation experiment 47
3.3 Error of various feedforward strategies without feedback 50
3.4 Error of various feedforward strategies with feedback 51
3.5 Experimental quadrotor vehicle used for hardware experiments 52
3.6 Error of various feedforward strategies on hardware line test 54
3.7 Error of various feedforward strategies on hardware circle test 55
3.8 Error of various feedforward strategies on hardware figure 8 test 56

4.1 Illustration of proposed acceleration disturbance compensation method . 58
4.2 Simulated step in position and yaw for feedback linearization and baselines 70
4.3 Position step hardware experiment for various thrust delay models 71
4.4 Wind with drag plate yaw-in-place hardware experiment 72
4.5 3D weave trajectory for experimental evaluation on hardware 73
4.6 Velocity error vs. time during 3D weave hardware experiment 74
4.7 Velocity error per rev. during 3D weave hardware experiment 75
4.8 Station-keeping performance during yaw-in-place hardware experiment . 76
4.9 Learned model performance for feedback linearization hardware experiments 77
4.10 Position error for PD vs feedback linearization during the ILC experiment 78
4.11 Trajectory side view of the ILC experiment 78

5.1 Rotor inertia yaw acceleration predictions during yaw step 83
5.2 Angular acceleration model discrepancy while following aggressive circles 84
5.3 Angular acceleration error after fitting a linear model (circles) 85
5.4 Position and tilt during three circles of 3.7 s each with 160 g load 86
5.5 Position and tilt during three circles of 2.7 s each with 160 g load 87
5.6 Adaptive attitude control perf. for 45◦ steps in wind field w/ drag plate . 88
5.7 Adaptive attitude control performance during yaw-in-place at 120 ◦/s . . 89
5.8 Effect of adaptive attitude control on position control: 120 ◦/s yaw-in-place 89
5.9 Effect of accel. model learning on position control: 120 ◦/s yaw-in-place . 90
5.10 Effect of accel. model learning on attitude control: 120 ◦/s yaw-in-place . 91

8

List of Figures

5.11 Effect of accel. model learning on position control: 180 ◦/s yaw-in-place . 92
5.12 Effect of accel. model learning on attitude control: 180 ◦/s yaw-in-place . 93
5.13 Control performance during 3D weave experiment for various strategies . 94
5.14 Position control perf. for feedback vs feedforward lin. on inner loop . . . 95
5.15 Attitude control perf. for feedback vs feedforward lin. on inner loop . . . 95

6.1 Quadrotor used in the outdoor experiments 98
6.2 T265 compared to Vicon during an aggressive Vicon flight 99
6.3 T265 compared to GPS during a fast outdoor flight 100
6.4 Flight path of aggressive outdoor flight using T265 control 100
6.5 Barometer vs GPS altitude during a fast outdoor flight 101
6.6 Outdoor field testing location for high speed flight 103
6.7 Overlay of medium speed 20 meter figure 8 trajectory at Gascola 106
6.8 Overlay of three high-speed 40m figure 8 trajectories at Gascola 106
6.9 Speed during 8m/s outdoor figure 8 . 107
6.10 Position error during the 8m/s outdoor figure 8 107
6.11 Speed error during the 8m/s outdoor figure 8 108
6.12 Speed during the 12m/s outdoor figure 8 108
6.13 Speed during the 14m/s outdoor figure 8 109
6.14 Speed during the 17m/s outdoor figure 8 109
6.15 Control performance summary of model learning vs baseline outdoors . . 110
6.16 Learned model during outdoor 20m figure 8 trajectory 110
6.17 Learned model during outdoor 12m/s 40m figure 8 trajectory 111
6.18 Learned model during outdoor 14m/s 40m figure 8 trajectory 112
6.19 Learned model during outdoor 17m/s 40m figure 8 trajectory 113
6.20 Linear vs nonlinear model comparison for outdoor field experiments . . . 113

A.1 Pixracer firmware implementation system diagram 120
A.2 Raw accelerometer data from a quadrotor at hover 120
A.3 Raw gyroscope data from a quadrotor at hover 121
A.4 Spectrogram of accelerometer data and motor RPMs during hover 122
A.5 Filtered accelerometer data from a quadrotor at hover 125
A.6 Filtered gyroscope data from a quadrotor at hover 125
A.7 Effect of RPM-based notch filtering on accelerometer spectrogram 126
A.8 Effect of dynamic notch filter on motor speeds at hover 126
A.9 Effect of dynamic notch filter on motor speed variance at hover 127
A.10 Effect of dynamic notch filter on unfiltered accelerometer data variance . 127
A.11 Effect of dynamic notch filter on unfiltered gyroscope data variance . . . 128
A.12 Effect of dynamic notch filter on filtered accelerometer data variance . . . 129
A.13 Effect of dynamic notch filter on filtered gyroscope data variance 129
A.14 Effect of notch filtering on estimated pitch 132
A.15 Effect of notch filtering on estimated roll 133
A.16 Effect of notch filtering on estimated pitch variance 133
A.17 Effect of notch filtering on estimated roll variance 134
A.18 Effect of gyro bias compensation on estimated tilt during hover 135

9

List of Figures

A.19 Estimated gyro biases during the hover from Fig. A.18 136
A.20 Effect of gyro bias compensation on estimated tilt during fast circles . . . 137
A.21 Estimated gyro biases during the flight from Fig. A.20 137
A.22 Effect of linear acceleration compensation on gyro biases 140
A.23 Effect of linear acceleration compensation on estimated tilt 141

B.1 Side view and roll of the quick direction change simulation test 147
B.2 Side view of the simultaneous position and yaw step simulation test . . . 148
B.3 Top view of the diagonal step simulation test 149

C.1 Outdoor figure 8 trajectory position plot 150
C.2 Outdoor figure 8 trajectory higher order derivatives plot 152

10

List of Tables

2.1 Summary of mathematical notation . 19

3.1 Comparison of representative methods for acceleration model learning . . 43
3.2 Disturbances used in 2D quadrotor simulation experiment 48
3.3 Maximum position errors for control strategies in simulation w/o feedback 51
3.4 Maximum position errors for control strategies in simulation with feedback 52
3.5 Trajectories used in the hardware experiment and their statistics 52

6.1 Outdoor quadrotor parts list . 98
6.2 Control gains used in the outdoor experiments 102
6.3 ISSGPR parameters used for the four outdoor trajectories 104
6.4 Parameters used to generate the outdoor trajectories 105
6.5 Outdoor trajectories and performance improvements using model learning 105

A.1 Time taken to apply 24 notch filters to accelerometer and gyroscope data 124
A.2 IMU data variances for various filtering methods 128
A.3 Optimal complementary filter weights based on a probabilistic model . . 132
A.4 Attitude Kalman filter noise parameters 140

B.1 Comparison matrix of various rotational error metrics 146

C.1 Position waypoints of outdoor figure 8 trajectories 151
C.2 Common parameters for outdoor trajectories 151

11

1chapter

Introduction

(a) (b) (c)

Figure 1.1: Autonomous aerial vehicle applications where precise and accurate control is
critical to ensure a safe and high quality outcome: (a) A hexarotor inspecting an archway
using a contact sensor [9], (b) a quadrotor exploring a subterranean environment in near
total darkness [84], and (c) a quadrotor autonomously filming an actor while avoiding
obstacles and ensuring an aesthetically pleasing shot [11].

Autonomous mobile robots have the potential to revolutionize society by alleviating the
burden of menial and dangerous tasks, increasing the speed or efficiency with which tasks
are completed, and enabling applications that were previously not possible. Aerial robots
in particular have been recently applied to search and rescue operations, inspection
[9, 70], cave exploration [84], agriculture [72], and drone cinematography [11], as shown
in Figure 1.1.

Underlying nearly every one of these applications is the need for accurate and robust
control. Quadrotors have been well represented in the control literature, due to their
agility and versatility, and have been a fruitful testbed for nonlinear controllers and
trajectory generation strategies [49, 51, 57, 77]. While control theory is able to provide
solutions for simulations and ideal scenarios where the environment and dynamical
models are known, flying quickly and precisely through unknown environments with
real hardware systems is still challenging. Unknown environments come with external
disturbances that are difficult to predict and hardware systems add imperfections, delays,
and difficult to model dynamics. Inaccurate dynamical models impede the ability of
control algorithms to generate accurate control inputs.

Modeling systems beforehand can remove some of this uncertainty, but such procedures
are complex, time intensive, and cannot account for changes to the vehicle and environ-
ment that happen online.

12

1.1 What is Forward Model-based Control?

Furthermore, in many quadrotor applications, speed is important. In addition to im-
proving performance on time-critical tasks such as search and rescue, flying faster can
also open entirely new domains, as the distance that can be traveled without replacing
batteries will be increased. Autonomous algorithms must be able to capture the full
potential of quadrotors by flying at high speeds and at high acceleration. This in turn,
increases the complexity of the dynamics encountered, such as aerodynamics due to
strong headwind, making the control problem more difficult.

This thesis focuses on improving quadrotor controls while operating at the limits of ve-
hicle performance in unknown environments and with unreliable state estimation.

Initially, advanced quadrotor controllers were developed with the aid of motion capture
systems such as Vicon, MotionAnalysis [63], and OptiTrack1. Such systems provide an
accurate, high rate state estimate that allows for high gain control. As vehicles are
employed outdoors in conditions where obtaining an accurate state estimate is difficult,
it becomes increasingly important to develop control algorithms that enable accurate
flight without requiring accurate state estimation.

We define accuracy as the closeness between the actual vehicle position p(t) : R 7→ R3 and
a prespecified reference trajectory pref(t) : R 7→ R3 for all time t > 0. We define accurate
flight as flight for which ||p(t) − pref(t)|| is minimized. Aggressive flight is defined as
the vehicle following a reference trajectory pref for which the magnitude of the velocity
||ṗref(t)|| and the magnitude of the acceleration ||p̈ref(t)|| are large for a significant set of
times t.

The goal of this thesis is to enable accurate and aggressive flight in the presence of
complex nonlinear unmodeled dynamics, unknown external disturbances, and degraded

state estimation.

1.1 What is Forward Model-based Control?

Forward model-based controllers convert predictive power into control performance.
Forward models are functions that can predict a system’s evolution forwards in time
as a function of the system’s state x and provided control inputs u.

ẋ = f(x, u) (1.1)

The model-based controller’s task is then to choose control inputs that best satisfy some
prescribed objective after evolving the system according to the system model. If the
model is accurate, then the actual system’s evolution will be close to that predicted by
the model and the desired outcome will be achieved. The objective may be described in
a number of ways but a very common choice is a cost function combined with a given
trajectory or goal state.

1https://optitrack.com/applications/robotics

13

https://optitrack.com/applications/robotics

1.2 How is Tracking Error Handled?

The task of choosing the control inputs for a given model and objective can, at least in
principle, be solved by forward simulating the system according to the model for some
time for all possible sequences of control inputs, evaluating the resulting trajectory of
each control input choice, and choosing the “best” outcome, or a “good-enough” outcome.
Of course, the task of trying every valid sequence of control inputs is impossible to solve
explicitly for all but the most simple discrete systems. Fortunately, there are a number
of compromises that can be made to compute the solution in a reasonable time.

For example, restricting the problem to smooth systems with a smooth, real-valued cost
function allows for gradient-based algorithms to descend down the cost surface to a local
minimum. Assuming linear dynamics and a quadratic cost function allows the use of the
large set of tools in linear control theory, e.g. the Linear Quadratic Regulator (LQR).
Simplified dynamics models will never match the real system exactly, but the speed of
computation they afford can often make up for it and allow the controller to run at a
high rate or on compute constrained systems. In particular, the Model Predictive Control
(MPC) paradigm can be used in real-time, to continuously correct for error arising due
to an inaccurate model or noise, using state feedback.

In general, higher fidelity models and more complicated objectives require more com-
putational resources to explicitly forward simulate the system. However, controllers can
implicitly predict the future in a number of ways. For example, due to the simplified linear
dynamics, the optimal LQR controller gain can be computed in closed-form during the
design phase, and can then be applied in real time without looking ahead. Dynamic
inversion is a technique where a controller inverts some assumed system dynamics to
convert the system into a linear one, whose evolution is known.

This thesis focuses on these implicit simulation methods, and attempts to improve control
performance by inverting a more accurate model of the quadrotor system. However, it
should be noted that the endeavor of learning a more accurate model is useful for any
model-based control scheme, as long as the improved model can be readily used by the
control system.

There are other control methods not based on forward models. Inverse models can be
built that directly help compute the control inputs that are “best” for a given system
state. Model-free methods in general use policies, or functions, that output the correct
control inputs. These can be learned using the reinforcement learning paradigm, for
example. For this thesis however, we focus on forward model-based control and consider
these other methods, while interesting and potentially promising for the future, as out
of scope.

1.2 How is Tracking Error Handled?

In a perfect world, systems can be controlled with zero tracking error. Real systems can
exhibit error due to model inaccuracies, system stochasticity, and anything else in the
environment not considered by the controller. For this discussion, assume there exists
some desired trajectory of states xref(t) and consider the following computation of the

14

1.2 How is Tracking Error Handled?

control input u, which is decomposed into a term dependent on tracking error, x− xref,
and a term only dependent on the reference xref.

u = −K(x− xref) + uff(xref) (1.2)

We refer to the first term as the feedback controls, since it depends on the true state x,
and the second term as the feedforward controls. If the cost we want to minimize is

Jtotal =

∫ ∞

0

J(x− xref)dt, (1.3)

then we notice that to achieve minimal cost, we want to minimize the contribution of the
feedback controller. In short, because a feedback controller is driven by error, we want
to use as little of it as possible.

In practice, executing identical sequences of control inputs on a real system results in a
different sequence of states, even for seemingly deterministic systems such as quadrotors.
This is due to the inherent stochasticity of the combined system and environment and
is a large reason why feedback controls are ubiquitous and essential. Since the xref is
deterministic and static, any controller for a stochastic system ought to consider the
true state x to correct for deviations along the trajectory. Furthermore, the feedforward
controls uff(xref) may not result in the desired state sequence xref when applied even on
a deterministic system. This is usually a consequence of using an imperfect dynamics
model to compute uff, an infeasible xref, or both.

So in summary, a feedback controller has two roles: (1) correct for any deviations
arising from system stochasticity, or variance, and (2) correct for errors arising from
the feedforward controls, or bias. The distinction between the two types of errors can
be blurred, since some behavior may be possible but infeasible to predict (e.g. complex
fluid disturbances). Practically, errors in the first category (variance) should be thought
of as unpredictable and errors in the second category (bias) should be thought of as
predictable or repeatable. Now we can see that handling bias errors using feedback
controls is suboptimal if one wishes to minimize tracking error. Thus, the conclusion is
that achieving minimal tracking error, requires a control designer to handle all repeatable
errors in the feedforward controls, and leave the non-repeatable errors to be handled by
the feedback controller.

There is a second reason one may wish to lower the influence of the feedback controller:
an unreliable state estimate. Since the feedback controller’s output depends on the state,
any errors, noise, or jumps in the output of the state estimator will be propagated to the
controls and to the system. This suggests a design optimization problem considering (1)
system stochasticity or variance, (2) dynamics model accuracy, and (3) state estimator
accuracy, for the purposes of minimizing tracking error. Improving any one of the above
three considerations, that is, reducing system variance, improving feedforward control
input accuracy (through a more accurate dynamics model), or improving state estimate
accuracy, is a drawback-free way to improve system tracking error. This thesis focuses
on the second method: improving feedforward control input accuracy by learning a more
accurate dynamics model.

15

1.3 Challenges

Figure 1.2: An example high speed trajectory executed outdoors on a quadrotor using
our proposed methods.

1.3 Challenges

Achieving low tracking error with aerial robots flying at high speed is difficult due to the
following challenges.

Challenge 1: Real-world vehicle exhibit complex nonlinear dynamics that are difficult
to model and these dynamics only increase in complexity at higher speed.

Challenge 2: External disturbances, such as wind and other aerodynamic effects, are
unknown and may be stochastic and time-varying.

Challenge 3: State estimation during aggressive flight is difficult, which leads to noisy
and discontinuous state estimates.

1.4 Contributions

We tackle the problem of external disturbances and unknown dynamics by learning
a dynamical system model using regression techniques from machine learning. We first
combine learned models with the differential flatness paradigm to fully invert the modeled
disturbance and recover optimal control performance despite an unknown model. We
then extend this approach to the feedback linearization controller for the quadrotor.
We show that control input delay modeling can be used to increase the robustness of
the feedback linearization controller. We also show feedback linearization’s superiority
in responding to jumps in the reference or state estimate, thus presenting an advantage
over traditional, or feedforward linearization controllers, when using vision-based state
estimation. We then explore model learning for the attitude dynamics of the quadrotor
and experimentally compare filtering and modeling approaches in the inner loop.

A summary of the contributions is below.

1. A natural framework for the analysis of attitude control feedback controllers.

16

1.5 Outline

2. Invert learned dynamical models to improve trajectory tracking performance in the
presence of state and input-dependent disturbances for the traditional cascaded
controller.

3. Invert learned dynamical models in the presence of state and input-dependent
disturbances for the feedback linearization controller.

4. A quadrotor feedback linearization controller that is more robust to control input
delay and has reduced order auxiliary dynamics.

5. A model learning strategy for the quadrotor inner loop that is competitive with
filtering-based approaches.

6. Validation of the proposed model learning method outdoors with high speed flight
by showing a decrease in tracking error. Figure 1.2 shows an example trajectory.

1.5 Outline

An outline of this document is provided below.

In Chapter 2, we review relevant concepts for aggressive and accurate quadrotor control,
and regression-based model learning strategies.

In Chapter 3, we use learned dynamical models to improve control performance in the
presence of unmodeled dynamics and external disturbances.

In Chapter 4, we extend the work described in chapter 3 to improve the robustness of
the feedback linearization controller in the presence of unmodeled dynamics and
external disturbances.

In Chapter 5, we explore model learning strategies to improve performance of the
quadrotor inner loop.

In Chapter 6, we validate the model learning strategy at high-speed in extensive outdoor
experiments.

In Chapter 7, we provide a summary and outline possible avenues for further research.

17

2chapter

Background

In this chapter, we review the background material that will be necessary to pursue the
goal of accurate trajectory following using a quadrotor. First, we provide the dynamic
models relevant for quadrotors and examine the typical quadrotor controller architecture,
along with the concept of differential flatness. We also provide an intuitive framework
for analyzing quadrotor attitude controllers using rotational error functions. Then, we
frame existing quadrotor controllers in the feedforward linearization formulation. Finally,
we give an overview of regression strategies that are used later in this thesis such as
incremental linear regression, random Fourier features, and Gaussian Processes.

Table 2.1 summarizes the common symbols used in this thesis.

2.1 Modeling

2.1.1 Note on Reference Frames

Most of the equations written in this thesis and derivatives computed hold true in any
fixed reference frame, as long as all quantities used are expressed in the same frame. The
two most commonly used frames are the world frame W and the body frame B. The
body frame B is assumed to be rigidly attached to the center of mass of the vehicle and
its axes are aligned with the natural vehicle axes; notably for quadrotors, the body z-axis
is aligned to the direction of thrust of all rotors. The axes of the body frame B are x, y,
and z. A vector n ∈ R3 expressed in the body frame nB can be related to the same vector
expressed in the world frame nW using the rotation matrix RW =

[
xW yW zW

]
.

nW = RWnB (2.1)

Although the body frame B is attached to the body, it is assumed to be an inertial frame
for the purposes of expressing physical quantities and their derivatives.

When an expression contains quantities expressed in two different frames, the subscripts
W and B will be used to denote the frame for all relevant quantities.

2.1.2 Dynamics

We model the quadrotor as a rigid body in SE(3), with the state consisting of position
p ∈ R3, velocity v ∈ R3, orientation R =

[
x y z

]
∈ SO(3), and angular velocity

18

2.1 Modeling

Table 2.1: Summary of mathematical notation

ẋ total time derivative of x
[v1]× cross product matrix M s.t. Mv2 = v1 × v2
I3 3 by 3 identity matrix

e1, e2, e3 3D unit vectors
ψ Euler angle around the z-axis
θ Euler angle around the y-axis
ϕ Euler angle around the x-axis
x aggregate state vector
u aggregate control vector
p position
v velocity, ṗ
a acceleration, v̇
j jerk, ȧ
s snap, j̇

W inertial world frame
B inertial frame attached to the body
R orientation of the body in SO(3)
x body x-axis, Re1
y body y-axis, Re2
z body z-axis, Re3
ω body angular velocity
u body z acceleration control input
α body angular acceleration control input
τ body torque
m mass
g gravity vector (points down)
I inertia matrix

ω ∈ R3, and the control consisting of thrust along the body z-axis u ∈ R+ and angular
acceleration α ∈ R3. Typically, the position p and velocity v are expressed in the fixed
frame, while the angular velocity ω and angular acceleration α are expressed in the body
frame. The state and control inputs are shown below.

x =

p
v
R
ω

 u =

[
u
α

]
(2.2)

Let the state space be described by

X = R3 × R3 × SO(3)× R3 (2.3)

and the control space by

U = R+ × R3. (2.4)

19

2.1 Modeling

muz

mg

Figure 2.1: The forces acting on the quadrotor are visualized: the gravity force mg points
straight down and the force due to the motor thrusts muz points in the direction of the
body z-axis.

Fig. 2.1 depicts the two forces considered in the standard quadrotor model: gravity and
motor thrust. From this, the acceleration v̇ = a can be computed as uz + g.

The time derivative of the rotation matrix expressed in the world frame ṘW as a function
of the angular velocity expressed in the body frame ωB can be computed by calculating
the time derivatives of the body axes x, y, and z, which are rotating at an angular
velocity of ω.

ṘW =
[
ẋW ẏW żW

]
=
[
ωW × xW ωW × yW ωW × zW

]
(2.5a)

=
[
(RWωB)× xW (RWωB)× yW (RWωB)× zW

]
(2.5b)

= RW
[
ωB × (R⊤

WxW) ωB × (R⊤
WyW) ωB × (R⊤

WzW)
]

(2.5c)
= RW

[
ωB × e1 ωB × e2 ωB × e3

]
(2.5d)

= RW [ωB]× (2.5e)

Thus, the dynamics are given by

ẋ =

v

uz + g
[ω]×R
α

 . (2.6)

2.1.3 Motor Modeling

In Section 2.1, we modeled the quadrotor with angular acceleration as a control input.
However, quadrotors in practice use Electronic Speed Controllers (ESCs) to control rotor
speed. ESCs with basic functionality take as input a throttle level from 0 to 100, and

20

2.2 Differential Flatness

apply power to the motor proportional to the input. The drawback to this simple scheme
is that as the voltage of the input power source drops, typically from a battery, the
rotational speed of the motor will drop as well. Thus, the rotational speed of the motor
is a function of the input voltage as well as the input throttle. To maintain a consistent
rotational speed for a given input, certain ESCs feature “closed-loop RPM mode”, which
allows a higher level controller to send a desired motor rotation speed (RPM) as a
setpoint to the motor controller.

In order to precisely control the quadrotor using a model-based paradigm, the onboard
controller needs to know how commands sent to the ESCs affect the motion of the
vehicle. Typically, an empirical relationship is estimated between motor speed and the
thrust produced for a particular motor and propeller combination. The rotor force model
used by the hardware in this thesis is a quadratic and calibrated beforehand using a load
cell.

fmotor(r) = ar2 + br + c (2.7)

Additionally, the relationship between the torque a rotor produces around the shaft axis
and the thrust is assumed to be linear.

τmotor(r) = cτfmotor(r) (2.8)

Then, rotor forces can be converted into a force and torque acting on the center of mass
of the quadrotor using knowledge of the vehicle geometry. Since typically, all rotors are
aligned in the direction of the vehicle’s z-axis, the force produced is a vector aligned
with the body z-axis with magnitude equal to the sum of all of the motor forces. The
direction of the torque exerted on the vehicle from each motor is opposite the direction
of rotation of the rotor shaft. Given the position of each rotor expressed in the body
frame pi, the total torque produced is the sum of each of the torques produced by the
motors, pi × (fie3) + (−1)icτfie3.[

mu
τ

]
=

[
1 · · · 1

p1 × e3 + cτe3 · · · pn × e3 − cτe3

]f1...
fn

 =Mf (2.9)

Strictly speaking, the term quadrotor refers to vehicles with four rotors, while multirotor
refers to vehicles more generally with any number of rotors, typically an even number
≥ 4. While we use the term quadrotor throughout, all of the control methods in this thesis
can be applied to hexarotors, octocopters, and most other multirotors by recomputing
M from (2.9) to reflect the geometry of the vehicle. If the rotors are not aligned with
the vehicle’s z-axis, which is out of this thesis’ scope, the vehicle is often fully actuated
and additional complexity is introduced [10].

2.2 Differential Flatness

Differential flatness, first introduced by Fliess, Lévine, Martin, and Rouchon [26], is a
property of a dynamical system that permits analytic expressions relating the system’s

21

2.2 Differential Flatness

state and control inputs to derivatives of a certain flat output. For a simple example,
consider a wheel of radius r rolling along a 1-dimensional line. The states of the system
are the wheel’s position p and angular velocity ω, while the control input is the torque
applied to the wheel τ . The dynamics of the wheel are given by

ṗ = ωr (2.10)
ω̇ = τ (2.11)

The position p can be seen as a flat output, since the remaining state, angular velocity,
can be expressed as ω = ṗ/r and the control input, torque, can be expressed as τ = p̈/r.
This is very useful for the purpose of controlling the wheel along a smooth position
trajectory. We can obtain the necessary control input τ by using the second derivative
of the desired position trajectory.

Van Nieuwstadt and Murray [88] showed how the concept of differential flatness can be
used to generate control inputs and tracking control laws that follow a given trajectory
for differentially flat systems. A large variety of practically useful system models are
differentially flat, such as many configurations of singular and coupled bodies [67], and
in particular, the quadrotor model described by (2.6).

Differential flatness of the quadrotor has been shown in many works but perhaps most
popularly in [61], which uses the Euler ZXY convention. Faessler, Franchi, and Scara-
muzza [23], which uses the Euler ZYX convention, extends the differential flatness
property of quadrotors to include linear rotor drag, and corrects the yaw handling
equations from [61]. Both [61] and [23] show differential flatness component-wise.

Before providing a vector-based derivation of differential flatness for the quadrotor model
(2.6), we first review different conventions for the definition of yaw ψ.

2.2.1 Yaw Definitions

The “yaw” is typically defined as the rotation around the z-axis for a particular sequence
of elementary rotations around the three axes x, y, and z. We will consider two Tait-
Bryan (also commonly referred to as Euler angles) sequences of intrinsic rotations: ZYX
and ZXY.

ZYX refers to first rotating about the z-axis (yaw), then rotating about the new body y-
axis (pitch), and finally rotating around the new body x-axis (roll). ZXY rotates around
z first, then rotates around the new x-axis, and finally the new y-axis. Although ZYX
is more common in the literature [55], ZXY has also been used [61], and often times the
convention is not explicitly mentioned, which leads to confusion.

We will now show that for a given orientation R, ZYX yaw is equal to the angle formed
by projecting the x-axis onto the horizontal plane and e1 and ZXY yaw is equal to the
angle formed by projecting the y-axis into the horizontal plane and e2.

To see this intuitively, take the case of ZYX. The first rotation rotates both the x and
y axes an angle of ψ with respect to the original x and y axes, i.e. e1 and e2. The

22

2.2 Differential Flatness

x0

x1

x2, x3

y0

y1, y2

y3

z0, z1

z2

z3

−ϕ

−θ

ψ

Figure 2.2: A visualization of the Euler ZYX convention. First, the body is rotated
around the z-axis z0 by an angle of ψ, then around the new y-axis y1 by an angle of θ,
and finally around the new x-axis x2 by an angle of ϕ. Since the last rotation around x2

does not change the x-axis, the yaw ψ can be defined as the angle between the projection
of the body x-axis x3 onto the horizontal plane and the world x-axis x0.

x0

x1, x2

x3

y0

y1

y2, y3

z0, z1

z2

z3
ϕ

θ

−ψ

Figure 2.3: A visualization of the Euler ZXY convention. First, the body is rotated
around the z-axis z0 by an angle of ψ, then around the new x-axis x1 by an angle of ϕ,
and finally around the new y-axis y2 by an angle of θ. Since the last rotation around y2
does not change the y-axis, the yaw ψ can be defined as the angle between the projection
of the body y-axis y3 onto the horizontal plane and the world y-axis y0.

23

2.2 Differential Flatness

second rotation rotates around the new y-axis, which, while lifting the x-axis out of
the horizontal plane, preserves the angle between the projection of the x-axis onto the
horizontal plane and e11. Thus after two rotations, the body x and body y axes, when
projected onto the horizontal plane, both make an angle of ψ with respect to e1 and e2
respectively. Finally, the third rotation rotates around the body x-axis, which leaves the
x-axis unchanged. Now, while the y-axis’ projection onto the horizontal plane, for ϕ ̸= 0,
no longer makes an angle of ψ with e2, the x-axis’ projection still does. This process is
visualized in Fig. 2.2.

The same argument with the axes flipped shows that for ZXY, the yaw ψ is described
by the angle between the y-axis’ projection onto the horizontal plane and e2. This is
visualized in Fig. 2.3, which is essentially a mirror image of Fig. 2.2.

Below we denote sin and cos by s and c for brevity and show the above mathematically.

RZY X = Rz(ψ)Ry(θ)Rx(ϕ) (2.12a)

=

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ 0 sθ
0 1 0

−sθ 0 cθ

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 (2.12b)

=

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ sθsϕ sθcϕ
0 cϕ −sϕ

−sθ cθsϕ cθcϕ

 (2.12c)

=

cθcψ cψsθsϕ− sψcϕ cψsθcϕ+ sψsϕ
cθsψ sψsθsϕ+ cψcϕ sψsθcϕ− cψsϕ
−sθ cθsϕ cθcϕ

 (2.12d)

From (2.12d), note that for cθ ̸= 0, xZY X = RZY Xe1 makes an angle of ψ with e1 when
projected onto the horizontal plane (zero out the z-component) and thus

tan(ψZY X) =
x⊤e2
x⊤e1

. (2.13)

Repeating this for the Euler ZXY convention,

RZXY = Rz(ψ)Rx(ϕ)Ry(θ) (2.14a)

=

cψ −sψ 0
sψ cψ 0
0 0 1

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 (2.14b)

=

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ 0 sθ
sϕsθ cϕ −sϕcθ
−cϕsθ sϕ cϕcθ

 (2.14c)

=

cϕcθ − sψsϕsθ −sψcϕ cψsθ + sψsϕcθ
sψcθ + cψsϕsθ cψcϕ sψsθ − cψsϕcθ

−cϕsθ sϕ cϕcθ

 (2.14d)

1When the rotation around the y-axis, or pitch, is 90◦, the yaw is undefined.

24

2.2 Differential Flatness

From (2.14d), note that for cϕ ̸= 0, yZXY = RZXY e2 makes an angle of ψ with e2 when
projected onto the horizontal plane (zero out the z-component) and thus

tan(ψZXY) = −y
⊤e1
y⊤e2

. (2.15)

We define the following vectors that lie in the horizontal plane and represent the body
x and body y axes after rotation around the z-axis by ψ.

xC =
(
cos(ψ) sin(ψ) 0

)⊤ (2.16)

yC =
(
− sin(ψ) cos(ψ) 0

)⊤ (2.17)

In the remainder of this thesis, we assume that yaw ψ is defined using the Euler ZYX
convention.

2.2.2 Flat Output to States and Control Inputs

We show that the model described by (2.6) is differentially flat with the outputs of
position p and yaw ψ, as defined by the Euler ZYX convention2. To do this, we need to
show that the states and control inputs are functions of the flat outputs and their higher
order derivatives.

Let R =
[
x y z

]
∈ SO(3). Note x, y, and z are all of unit length and pair-wise

orthogonal. Let a (acceleration), j (jerk), and s (snap), all in R3, represent the second,
third, and fourth derivative of the vehicle position.

The objective is, given p, v, a, j, s, ψ, ψ̇, and ψ̈, compute R, ω, u, and α.

Let the flat output and its derivatives be represented by

Z = R3 × R3 × R3 × R3 × R3 × S1 × R× R. (2.18)

The next three parts will implement a transformation

T −1 : Z 7→ X × U , (2.19)

which can also be written as (omitting the trivial mapping between position and veloc-
ity)

R,ω, u, α = T −1(a, j, s, ψ, ψ̇, ψ̈). (2.20)

Note that while X and U together only have 16 degrees of freedom, Z has 18 degrees of
freedom due to the inclusion of the jerk and snap of the position along the z-axis.

Before computing the mapping T −1, we first find the forward mapping T .

a, j, s, ψ, ψ̇, ψ̈ = T (R,ω, u, α) (2.21)

2The computation using the Euler ZXY convention is similar but is omitted here for brevity.

25

2.2 Differential Flatness

For ease of reference in later sections, we introduce the notation Tξ(R,ω, u, α), represent-
ing the computation of an arbitrary quantity ξ using a subset of the input (R,ω, u, α).

First we compute ż, z̈. ẋ, and ẍ.

Tż(z, ω) := ż = ω × z (2.22)
Tz̈(z, ω, α) := z̈ = α× z + ω × ż (2.23)
Tẋ(x, ω) := ẋ = ω × x (2.24)

Tẍ(x, ω, α) := ẍ = α× x+ ω × ẋ (2.25)

From the dynamics (2.6), we can compute a, j, and s.

Ta(z, u) := a = uz + g (2.26)
Tj(z, u, u̇, ω) := j = u̇z + uż (2.27)

Ts(z, u, u̇, ü, ω, α) := s = üz + 2u̇ż + uz̈ (2.28)

Let x1 = x⊤e1 and x2 = x⊤e2. From (2.13), we can compute ψ.

Tψ(x) := ψ = atan2(x2, x1) (2.29)

Differentiating (2.29) provides ψ̇ and ψ̈.

Tψ̇(x, ω) := ψ̇ =
−x2ẋ1 + x1ẋ2

x2
1 + x2

2

(2.30)

Tψ̈(x, ω, α) := ψ̈ =
−x2ẍ1 + x1ẍ2 − 2ψ̇(x1ẋ1 + x2ẋ2)

x2
1 + x2

2

(2.31)

2.2.2.1 Computing Orientation and Thrust

From (2.26), we can compute u and z.

T −1
u (a) := u = ||a− g|| (2.32)

T −1
z (a) := z =

a− g

||a− g||
(2.33)

The body x-axis is computed as the normalized cross product between yC and z. This
ensures that x is perpendicular to z and also parallel to xC when projected onto the
horizontal plane (i.e. satisfying the yaw constraint).

x =
yC × z

||yC × z||
(2.34)

The y-axis is computed from the x and z-axes to satisfy orthonormality using the right-
hand rule.

y = z × x (2.35)

Eqs. (2.33)–(2.35) define the following inverse mapping for the orientation R.

T −1
R (a, ψ) := R =

[
x y z

]
(2.36)

26

2.2 Differential Flatness

2.2.2.2 Computing Angular Velocity

Before we compute the angular velocity ω as a function of the flat states, we compute ω
as a function of ż and ẋ using the scalar and vector triple products3, in effect inverting
(2.22) and (2.24).

z × ż = z × (ω × z)

= (z⊤z)ω − (ω⊤z)z

= ω − (ω⊤z)z (2.37)

and analogously for ẋ,

x× ẋ = ω − (ω⊤x)x (2.38)

Since (2.37) computes ω less its z-component, and (2.38) computes ω less its x-component,
we can add the z-component of (2.38) to (2.37) to get a full expression for ω.

ω = z × ż +
(
(x× ẋ)⊤z

)
z

= z × ż +
(
(z × x)⊤ẋ

)
z

= z × ż + (y⊤ẋ)z (2.39)

(2.39) computes the angular velocity ω from the orientation and the first time derivatives
of the body x and body z axes.

We can compute ż from (2.27) directly and u̇ by projecting (2.27) along z.

ż =
1

u
(j − u̇z) (2.40)

u̇ = j⊤z (2.41)

To compute ẋ, differentiate (2.34).

ẋ =
I − xx⊤

||yC × z||

(
−ψ̇xC × z + yC × ż

)
(2.42)

Now, combine (2.42) with (2.40) and (2.39) to get the inverse mapping for ω.

T −1
ω (u, a, j, ψ, ψ̇) := ω =

1

u
z × j +

1

||yC × z||

(
ψ̇x⊤

Cx+
1

u
(j⊤x)(y⊤Cz)

)
z

(2.43a)

(2.43a) can also be expressed without x or xC , as

T −1
ω (u, a, j, ψ, ψ̇) := ω =

1

u
z × j +

1

||yC × z||2

(
ψ̇z⊤e3 +

1

u
(y⊤Cz)y

⊤
C (z × j)

)
z

(2.43b)
3a⊤(b× c) = b⊤(c× a) = c⊤(a× b). a× (b× c) =

(
a⊤c

)
b−

(
a⊤b

)
c.

27

2.2 Differential Flatness

2.2.2.3 Computing Angular Acceleration

To compute the angular acceleration α as a function of z̈ and ẍ, we similarly apply a
cross product with z and x to (2.23) and (2.25).

z × z̈ =
(
z⊤z

)
α−

(
α⊤z

)
z +

(
z⊤ż

)
ω −

(
ω⊤z

)
ż

= α− (α⊤z)z − (ω⊤z)ż (2.44)

And similarly for ẍ,

x× ẍ = α− (α⊤x)x− (ω⊤x)ẋ (2.45)

Now combine (2.44) and (2.45) to obtain

T −1
α (u, a, j, s, ψ, ψ̇, ψ̈) := α = z × z̈ + (ω⊤z)ż +

((
x× ẍ+ (ω⊤x)ẋ

)⊤
z
)
z

= z × z̈ + (ω⊤z)ż +
(
y⊤ẍ+ (ω⊤x)(z⊤ẋ)

)
z

= z × z̈ + (ω⊤z)ż +
(
y⊤ẍ− (ω⊤x)(ω⊤y)

)
z. (2.46)

(2.46) computes the angular acceleration α from the orientation, and the first and second
derivatives of the body x and body z axes.

We can compute z̈ from (2.28) and ü by projecting (2.28) onto z and making use of
z⊤z = 1 =⇒ z⊤ż = 0 =⇒ z⊤z̈ = −ż⊤ż.

z̈ =
1

u
(s− 2u̇ż − üz) (2.47)

ü = s⊤z + uż⊤ż (2.48)

To compute ẍ, (2.42) can be differentiated. However, in practice, the second gradient
of (2.13), along with the unit length constraint and orthogonality constraint between x
and z, is used in a linear system to solve for ẍ.

2.2.2.4 Linear System Solutions for ẋ and ẍ

The body axis rates ẋ and ẍ are fully constrained by considering the following three
constraints on x.

x⊤x = 1 unit length constraint (2.49)

x⊤z = 0 orthonormality constraint (2.50)

tan(ψ) =
x⊤e2
x⊤e1

Euler ZYX yaw constraint (2.51)

Differentiate (2.49), (2.50), and rearrange (2.30) to obtain

x⊤ẋ = 0 (2.52)

z⊤ẋ = −x⊤ż (2.53)[
−x2 x1 0

]
ẋ = ψ̇

(
x2
1 + x2

2

)
. (2.54)

28

2.3 Feedback Control

Now ẋ can be found by solving the linear system

Aẋ = b1 (2.55)

with

A =

 x⊤

z⊤

−x2 x1 0

 , b1 =

 0
−x⊤ż

ψ̇ (x2
1 + x2

2)

 . (2.56)

To find ẍ, differentiate (2.52), (2.53), and rearrange (2.31).

x⊤ẍ = −ẋ⊤ẋ (2.57)

z⊤ẍ = −2ẋ⊤ż − x⊤z̈ (2.58)[
−x2 x1 0

]
ẍ = ψ̈

(
x2
1 + x2

2

)
+ 2ψ̇(x1ẋ1 + x2ẋ2) (2.59)

Now ẍ can be found by solving the linear system

Aẍ = b2 (2.60)

with

b2 =

 −ẋ⊤ẋ
−2ẋ⊤ż − x⊤z̈

ψ̈ (x2
1 + x2

2) + 2ψ̇ (x1ẋ1 + x2ẋ2)

 . (2.61)

2.3 Feedback Control

In this section, we describe the feedback control architecture and relevant concepts used
throughout the remainder of the thesis. Quantities denoted with “ref”, as in aref, denote
reference quantities that are assumed given from a higher-level planner. Those denoted
with “des”, as in ades, denote desired quantities that are derived from reference quantities,
vehicle state, or both, and used as inputs to the controller.

2.3.1 Cascaded Control Architecture

Traditional quadrotor controllers use the cascaded controller architecture depicted in
Fig. 2.4, where a position controller generates references for an inner attitude controller.
This is also known as a backstepping controller.

The outer position controller is most commonly a PD controller, the output of which is
interpreted as an acceleration vector.

ades = −Kp(p− pref)−Kv(v − vref) + aref (2.62)

To compute udes, cascaded controllers typically use one of the following three meth-
ods.

29

2.3 Feedback Control

Control

Yaw Reference

AttitudePosition

Rotational
Error Metric

Position
Controller

Acceleration
Desired

Attitude
Desired

T −1Position
Reference

Figure 2.4: The standard cascaded quadrotor controller architecture. The position
controller computes a desired acceleration, which is then combined with the yaw reference
to generate an attitude reference for the attitude controller. The attitude controller then
uses a rotational error metric to compute the controls.

1. Norm of the desired acceleration vector [28]

2. The desired acceleration vector projected onto the actual body z-axis [23, 61]

3. The acceleration necessary to achieve the desired acceleration along the world z-
axis [30]

These correspond to the following versions of T −1
u applied to ades and z.

T −1
u1 (a) := u = ||a− g|| (2.63a)

T −1
u2 (a, z) := u = (a− g)⊤z (2.63b)

T −1
u3 (a, z) := u =

(a− g)⊤e3
z⊤e3

(2.63c)

Note that with zdes = T −1
z (ades), T −1

u1 (ades) = T −1
u2 (ades, zdes) = T −1

u3 (ades, zdes). The
most common choice in the literature is the second, and this is what we will use in this
thesis.

udes = T −1
u2 (ades, z) = (ades − g)⊤z (2.64)

The desired acceleration vector ades is then combined with the reference yaw ψref and
higher order references jref, sref, ψ̇ref, and ψ̈ref to compute the desired orientation Rdes,
desired angular velocity ωdes, and desired angular acceleration αdes for the attitude
controller using the differential flatness transformations T −1

R from (2.36), T −1
ω from

(2.43b), and T −1
α from (2.46).

Rdes = T −1
R (ades, ψref) (2.65)

ωdes = T −1
ω (udes, ades, jref, ψref, ψ̇ref) (2.66)

αdes = T −1
α (udes, ades, jref, sref, ψref, ψ̇ref, ψ̈ref) (2.67)

Note that the acceleration udes used in the above inverse mappings does not necessarily
have to be equal to the acceleration used as the system control input.

The desired orientation, angular velocity, and angular acceleration are then used in a
modified-PD attitude controller, which uses a rotational error function eR : SO(3) ×

30

2.3 Feedback Control

Rotational
Error Metric

−KR

−Kω

Attitude Estimator

Position Control & Reference Trajectory
Rdes ∈ SO(3) ωdes ∈ R3 αdes ∈ R3

Mixer

Tdes ∈ R

τ
αfb

Motor Forces
f ∈ Rnmotor

Motor Speeds
r ∈ Rnmotor

ω × Iω

Motor
Model

ESC

R ∈ SO(3)

ω ∈ R3

αdist ∈ R3

−ωdes

I

Figure 2.5: Dataflow diagram of the attitude control system. The output of the attitude
estimator, combined with the position controller and reference trajectory, is used to
compute a desired angular acceleration, which in turn gets converted into desired rotor
speeds using the vehicle and motor dynamics models.

SO(3) 7→ R3 to compare the current orientation R to the desired orientation Rdes.

α = −KReR(R,Rdes)−Kω(ω − ωdes) + αdes (2.68)

This attitude controller is described in further detail in Section 2.3.2.

2.3.2 Attitude Control

The attitude controller takes in the following as input.

• The attitude state, consisting of the orientation of the vehicle R ∈ SO(3), the
angular velocity ω ∈ R3, and angular acceleration disturbance estimate αdist ∈ R3.

• The reference trajectory and position controller output, consisting of the desired
orientation Rdes ∈ SO(3), desired angular velocity ωdes ∈ R3, desired angular
acceleration αdes ∈ R3, and the desired thrust Tdes = mudes ∈ R+.

The controller outputs the desired motor speed for each of the nmotor motors on the
vehicle, r ∈ Rnmotor .

A high level data flow diagram of the controller is shown in Fig. 2.5.

In the first stage, the current attitude state is compared to the desired attitude state
to generate an angular acceleration αfb that intends to drive the attitude state to the
desired state. A special attitude error function eR : SO(3)× SO(3) 7→ R3 must be used
to compare the current attitude to the desired attitude, while the angular velocities are
compared using a simple difference.

αfb = −KReR(R,Rdes)−Kω(ω − ωdes) + αdes − αdist (2.69)

Since ωdes and αdes are typically expressed in either the reference frame defined by
Rref = T −1(aref, ψref) or the desired frame defined by Rdes = T −1(ades, ψref), they can be
converted into the current body frame by multiplication with R⊤Rref or R⊤Rdes. This

31

2.3 Feedback Control

choice is relevant when using an imperfect dynamical model and will be explored in
Section D.

Converting the control inputs to rotational motor speeds is first achieved by calculating
forces for each of the rotors, that when applied, will result in the desired body thrust
and angular acceleration. Angular acceleration α is converted into torque τ using Euler’s
equations of motion for a rigid body.

τ = Iα+ ω × Iω (2.70)

This torque is then combined with the desired thrust along the body z-axis Tdes = mu
using the vehicle mixer to generate the desired forces at each motor f ∈ Rnmotor . These
motor forces are such that, according to the vehicle geometry, applying them on the
vehicle will result in the desired torque and thrust. Since the mixer is usually the linear
mapping M found in (2.9), computing these forces is a matter of inverting M , though
more advanced techniques can be used, for example to prioritize vehicle stability under
control input saturation [21].

f =M †
[
Tdes

τ

]
(2.71)

Finally, each desired rotor force in f is converted into a desired motor speed by inverting
the model of the motor’s rotor speed to thrust relationship. This is typically the quadratic
mapping (2.7), introduced in Section 2.1.3.

ri = f−1
motor(fi) (2.72)

2.3.2.1 Rotational Error Functions

In this section, we give example attitude error functions eR that can be used with
the described attitude control system. Attitude error functions effectively compute a
difference between two orientations in SO(3). We provide brief discussions about the
advantages and disadvantages of each error function.

Euler Angles The most common choice of error function uses differences of Euler
angles. It is simple to implement and think about, but it has many disadvantages, mainly
coming from the coupling between angles at large displacements.

Let ϕ, θ, ψ correspond to the Euler angles around the x, y, and z axes (the ZYX Euler
angles) for an orientation R ∈ SO(3).

eR =
(
ϕ− ϕdes θ − θdes ψ − ψdes

)
(2.73)

SO(3) Two orientations can directly be compared in SO(3) using an error function
described by [50]. Here, ∨ (vee) is an operator that takes a skew symmetric matrix and
turns it into a 3 dimensional vector (the inverse of the ∧ (hat) map).

eR =
1

2
√
1 + tr[R⊤

desR]

(
R⊤

desR−R⊤Rdes
)∨

(2.74)

32

2.3 Feedback Control

This is a natural error function choice for attitude control since it provides a response
in the direction of the shortest path, or Euler axis rotation to the desired orientation.
However, it may not be ideal for quadrotors, as it does not decouple yaw from the attitude
response.

As written above, the error function has a singularity when the angular error is 180◦.
This can be avoided by using an error function, shown below, that smoothly approaches
zero as the angular difference approaches 180◦.

eR =
1

2

(
R⊤

desR−R⊤Rdes
)∨

(2.75)

The disadvantage of this is that now the response of the system decreases for angles
larger than 90◦. However, this error function is still seen in the literature [34]. From a
theoretical point of view, they both provide almost global exponential stability for the
set of initial attitude errors that excludes errors of 180◦.

Quaternion Similar to the SO(3) error function, the computation can be performed
using quaternions [13]. Let q be the quaternion representing the rotation represented by
R and let qw and qv be the scalar and axis part of that quaternion.

qerr = q−1 · qdes (2.76)
eR = −2 sgn(qerr,w)qerr,v (2.77)

This error function turns out to be equivalent to the first SO(3) error function described
above, less a factor of 2. It may be more desirable to use than the SO(3) function, since it
is simple and more efficient to implement. For example, this is the error function used by
the PX4 autopilot4, where the yaw decoupling discussed in [13] is also implemented.

Thrust Vector The z-axis of a quadrotor is dynamically linked to its position. This
is due to the constraint that any linear acceleration imparted by the rotors acts in the
direction of the vehicle’s z-axis. However, the rotation around the z axis is unconstrained
by the position, and thus it makes sense to treat the attitude control problem as two
distinct problems: the alignment of the body z-axis to the desired z-axis, and the selection
of an angular acceleration around the z-axis. This decomposition is discussed in detail
in [48]. We focus only on the z-axis alignment problem here. The acceleration around
the z-axis can be chosen to follow a desired yaw trajectory.

The change in rotation required to align two vectors can be computed by taking a cross
product. Let z be the current z-axis of the vehicle and zdes be the desired z-axis.

eR = zdes × z (2.78)

In practice, this is usually implemented in the body frame where z = e3.

This thrust vector attitude error function has the advantage that it does not couple yaw
dynamics with translational vehicle dynamics as the SO(3) and quaternion-based metrics

4https://github.com/PX4/Firmware/blob/ab060cdab076fb6934a86a75349cd9330c873432/src/modules/mc_att_control/AttitudeControl/
AttitudeControl.cpp#L88

33

https://github.com/PX4/Firmware/blob/ab060cdab076fb6934a86a75349cd9330c873432/src/modules/mc_att_control/AttitudeControl/AttitudeControl.cpp#L88
https://github.com/PX4/Firmware/blob/ab060cdab076fb6934a86a75349cd9330c873432/src/modules/mc_att_control/AttitudeControl/AttitudeControl.cpp#L88

2.3 Feedback Control

do. One such example is provided in [48]: SO(3)-based metrics result in deviation from
a straight line step when there is large initial yaw error. For a second example, consider
a diagonal step with a desired yaw of zero. SO(3)-based metrics result in the vehicle
following a curved path to the goal while the thrust vector error function follows the
straight line path to the goal.

(2.78), similarly to (2.75), has magnitude that decreases as the angle error increases past
90◦ and reaches zero at 180◦. This can be alleviated using a scaling factor similar to the
one in (2.74). See Appendix B for the details.

Later, we will see how the attitude controllers discussed here compare to the feedback lin-
earization controller. For a more detailed discussion of various rotational error functions,
including simulation case studies, see Appendix B.

2.3.3 Model Predictive Controllers

In addition to the differential flatness and linearization-based controllers discussed in
this chapter, there exist model predictive controllers (MPC), which attempt to optimize
a trajectory subject to the vehicle dynamics and state and control input constraints. The
key idea of MPC is to use a forward model of the system dynamics to predict what will
happen as a function of the chosen control input, and select the control input to achieve
the desired outcome. In contrast to planners, which typically generate a trajectory and/or
control inputs once at the start, an MPC repeats this computation in the control loop,
taking into account the current state of the vehicle.

There are a wide variety of such optimizing controllers and they can be roughly cat-
egorized by the assumptions they place on the system dynamics, cost function, and
constraints. The solution type and complexity will vary according to these assumptions.
In general, MPC methods that allow for nonlinear dynamics and nonlinear cost func-
tions and constraints are more computationally expensive than those that make more
simplifying assumptions such as linear dynamics, a quadratic cost function, and linear
constraints.

MPC methods have been very popular on a wide variety of systems [54, 93]. The use
of a forward model in the optimization makes MPC an easy paradigm to combine
with (forward) model learning of the system dynamics [5, 19, 52, 86]. MPC has also
been applied for active perception on quadrotors [24] and combined with feedforward
linearization [35].

While this thesis does not focus on MPC, many of the techniques presented here can
be augmented with MPC in a manner similar to [35]. Although differential flatness can
adequately account for nonlinear dynamics, state and control input constraints are still
a problem, and that is one area where applying an MPC can provide benefit.

34

2.4 Disturbance Compensation

2.4 Disturbance Compensation

We use L1 adaptive control [63] on the position loop and an angular acceleration distur-
bance observer on the attitude loop as baseline disturbance compensation strategies. L1

adaptive control is essentially a nonlinear Luenberger state observer with a low pass filter.
We briefly outline the implementation used for acceleration disturbance compensation
and angular acceleration disturbance compensation.

2.4.1 Acceleration Disturbance Observer

The observer state consists of the estimated velocity v̂ ∈ R3 and the estimated acceler-
ation disturbance âd ∈ R3. The model dynamics are assumed to be

v̇ = uz + g + ad. (2.79)

The velocity estimate v̂ is updated according to the predicted velocity and the velocity
estimation error scaled by a gain.

˙̂v = uz + g + âd −Kv(v̂ − v) (2.80)

The acceleration disturbance estimate âd is updated using the velocity estimation error
scaled by a gain.

˙̂ad = −Ka(v̂ − v) (2.81)

Before the acceleration disturbance estimate âd is used in the controller, a low pass filter
of bandwidth γ is applied.

˙̂aLPF
d = −γ(âLPF

d − âd) (2.82)

(2.80), (2.81), (2.82) are implemented at position control rate using Euler integration.

The cascaded controller (2.62) is then augmented to compensate for the estimated
disturbance.

aL1
des = −Kp(p− pref)−Kv(v − vref) + aref − âLPF

d (2.83)

2.4.2 Angular Acceleration Disturbance Observer

An estimate of the angular acceleration disturbance is updated by comparing the pre-
dicted angular velocity with the true angular velocity. Let α̂d ∈ R3 be the angular
acceleration disturbance estimate and α ∈ R3 the angular acceleration control input
from the attitude controller.

˙̂ω = α + α̂d −Kω(ω̂ − ω) (2.84)
˙̂αd = −Kα(ω̂ − ω) (2.85)

See Section A.2.4 for more details about the attitude disturbance estimation base-
line.

35

2.5 Linear Regression for Model Learning

2.5 Linear Regression for Model Learning

We use incremental linear regression to enable online learning of system dynamics. We
first introduce the linear least squares model learning formulation, then show how the
same linear regression can leverage a nonlinear feature space, and finally show how the
solution to these regression problems can be computed recursively online.

2.5.1 Linear Regression

Linear regression attempts to find the linear model that best fits a given dataset. The
assumed model is of the form

y = w⊤x. (2.86)

Given a dataset consisting of N pairs of points (xi, yi), with xi ∈ Rn and yi ∈ R, the
objective is to find ŵ ∈ Rn, such that the difference between the predicted values ŵ⊤xi
and the true values yi is minimized. This can be encoded using the sum of the squared
errors using the following cost function.

f(w) =
N∑
i=1

1

2
(w⊤xi − yi)

2 (2.87)

We can find a minimum of f(w) by differentiating with respect to w. First define X =[
x1 · · ·xN

]⊤ ∈ RN×n and Y =
[
y1 · · · yN

]⊤ ∈ RN . Here we adopt the notation Xij, Xi,
and Yi to refer to the i’th row j’th column entry of X , i’th row of X , and i’th entry
of Y .

∂f

∂wi
=

N∑
j=1

(w⊤Xj − yj)Xji

=
N∑
j=1

(w⊤Xj)Xji −
N∑
j=1

yjXji

=
N∑
j=1

(
n∑
k=1

Xjkwk

)
Xji −

N∑
j=1

Xjiyj

=
N∑
j=1

n∑
k=1

XjiXjkwk −
N∑
j=1

Xjiyj

=
n∑
k=1

N∑
j=1

XjiXjkwk −
N∑
j=1

Xjiyj

=
n∑
k=1

(
N∑
j=1

XjiXjk

)
wk −

N∑
j=1

Xjiyj

36

2.5 Linear Regression for Model Learning

=
n∑
k=1

(
N∑
j=1

X⊤
ijXjk

)
wk −

N∑
j=1

X⊤
ijyj

=
n∑
k=1

(
X⊤X

)
ik
wk −

N∑
j=1

X⊤
ijyi

=
(
X⊤Xw

)
i
−
(
X⊤Y

)
i

∂f

∂wi
=
(
X⊤Xw −X⊤Y

)
i

(2.88)

From (2.88), it follows that

∂f

∂w
= X⊤Xw −X⊤Y (2.89)

and a local minimum can be found at

ŵ =
(
X⊤X

)−1
X⊤Y. (2.90)

The n×n matrix X⊤X is invertible when there are at least n linearly independent input
vectors in the set {xi}Ni=1. In that case, the pseudoinverse of X is indeed (X⊤X)−1X⊤.
In practice, because dynamical models are learned from many data points and N >> n,
this is almost always the case and ŵ represents a least squares solution to the regression
problem.

Bayesian Interpretation One can formulate linear regression from a Bayesian point
of view using the model form

p(y|x,w) = N (w⊤x, σ2
n) (2.91)

w ∼ N (0,Σp) (2.92)

where σ2
n represents the variance of the output points and Σp the uncertainty in a zero

prior on w [75]. The maximum a posteriori (MAP) estimate is found using

ŵ =
(
X⊤X + σ2

nΣ
−1
p

)−1
X⊤Y. (2.93)

The addition of σ2
nΣ

−1
p ensures the inverse always exists for any positive σ2

n and positive
definite Σp. When Σp = cIn, (2.93) is equivalent to Tikhonov regularization or ridge
regression. The uncertainty in the zero prior on w serves as a hyperparameter that
controls how strong the model estimates are towards zero. Biasing estimates towards
zero is a way to regularize the model and is used to avoid overfitting. In the incremental
dynamical model learning setting, a zero prior can be useful in the first few learning
iterations to avoid spurious and noisy model outputs. When the variance of the zero
prior on w is infinite, (2.93) reduces to (2.90).

In addition to an output mean, Bayesian linear regression outputs a full posterior
distribution, the variance of which may be useful for downstream applications such as
constrained model predictive control [19].

37

2.5 Linear Regression for Model Learning

One big drawback with linear regression is that nonlinear functions of the input cannot
be accurately captured by a linear model. In the next section, we review how linear
regression can be augmented with nonlinear features to alleviate this shortcoming.

2.5.2 Linear Regression with Nonlinear Features

To allow for the model to capture nonlinear relationships between the input xi and
output yi, we can compute nonlinear features of the input ϕ(xi). The assumed model
form is now

y = w⊤ϕ(x) (2.94)

This model is strictly more general than (2.86). Pure linear model learning can be recov-
ered with ϕ(x) = x. Affine model learning results from ϕ(x) =

[
x⊤ 1

]⊤ and n’th order
univariate polynomial regression can be performed with ϕ(x) =

[
1 x x2 · · · xn

]
.

The resulting squared error cost function

f(w) =
N∑
i=1

1

2
(w⊤ϕ(xi)− yi)

2 (2.95)

can be minimized in much the same way as in standard linear regression. Let ϕ : Rn 7→ Rd

and Φ ∈ RN×d be the matrix whose i’th row is ϕ(xi). Then, the unregularized least
squares solution ŵ ∈ Rd can be found with

ŵ =
(
Φ⊤Φ

)−1
Φ⊤Y (2.96)

and the regularized solution with

ŵ =
(
Φ⊤Φ + σ2

nΣ
−1
p

)−1
Φ⊤Y. (2.97)

Rahimi and Recht [74] showed that sinusoids with randomly chosen frequencies are
a particularly effective choice of features and approximate a feature space in which
inner products are defined using the squared exponential kernel. The number of random
frequencies D can be smoothly varied to trade-off between computation speed and
model regressive power. A small number of frequencies is easy to regress with but the
model may not be able to accurately capture the nonlinearities of the system. A large
number of frequencies increases the model power at the expense of computation time.
Random frequencies Ω ∈ RD×n can be generated by multiplying a D by n matrix of
univariate Gaussians by diag(M), where each entry in M ∈ Rn is the inverse of the
characteristic length scale of the corresponding input dimension. The length scales allow
for the adjustment of the relative importance of each input dimension and are thus
hyperparameters that need to be adapted to the application [33]. The nonlinear features
as a function of the input data x are

ϕ(x) =
1√
D

[
cos(Ωx)
sin(Ωx)

]
. (2.98)

38

2.5 Linear Regression for Model Learning

2.5.3 Incremental Linear Regression

Since the linear regression problem can be solved using a matrix inverse, updating the so-
lution to the linear regression problem given a new data point corresponds to performing
a rank-one update on the corresponding matrix inverse. The Sherman-Morrison formula
applied to the inverse is one way to do this, while rank-one updates to the Cholesky
decomposition is another, typically more numerically stable, approach.

Incremental linear regression using the random features (2.98) is described in [32] and
extended to the Bayesian formulation in [33].

A key observation from (2.90), and the analogous solutions (2.93) and (2.97), is that the
sizes of (X⊤X)−1 ∈ Rn×n and X⊤Y ∈ Rn are independent of the number of data points
in the regression problem N . Thus if (X⊤X)−1 and X⊤Y can be computed recursively
as additional data points (xi, yi) are received, the regression solution ŵ can easily be
computed in time independent of the number of data points.

X⊤Y =
[
x1 · · · xN

] y1...
yn

 =
N∑
i=1

yixi (2.99)

(2.99) shows that X⊤Y can be computed using a running sum.

To recursively compute (X⊤X)−1, first decomposeX⊤X into its Cholesky decomposition
R⊤R, then perform rank one updates to R using Givens rotations [32]. While the
Sherman–Morrison formula can directly be used on (X⊤X)−1, the Cholesky decom-
position method is more numerically stable. The Cholesky factor R is then used with
backsubstitution and X⊤Y to compute ŵ in O(n) time.

39

3chapter

Inverting Learned Dynamics Models
for Quadrotor Trajectory Tracking

We present a control strategy that applies inverse dynamics to a learned acceleration error
model for accurate quadrotor control input generation. This allows us to retain accurate
trajectory and control input generation despite the presence of exogenous disturbances
and modeling errors. Although accurate control input generation is traditionally possible
when combined with parameter learning-based techniques, we propose a method that
can do so while solving the relatively easier non-parametric model learning problem. We
show that our technique is able to compensate for a larger class of model disturbances
than traditional techniques can and we show reduced tracking error while following
trajectories demanding accelerations of more than 7m/s2 in quadrotor simulation and
hardware experiments.

3.1 Introduction

3.1.1 Motivation

Computing precise control inputs for a dynamical system often requires accurate knowl-
edge of its dynamics. Chapter 2.2 showed that for a quadrotor, differential flatness can
be used to compute the exact inputs required to follow a specified trajectory in x, y, z,
and yaw. The computed control inputs are only accurate if the fixed dynamic model and
its associated parameters, e.g. mass, inertia, etc., are correct. Often, this fixed dynamic
model assumption fails and the estimated parameters are inaccurate. This results in
suboptimal trajectory tracking performance.

One possible approach to alleviate this problem is to estimate the model parameters
from vehicle trajectory data. This however, can be difficult, and is still suboptimal
when the chosen parameterization cannot realize the true vehicle model. On the other
hand, non-parametric error models are commonly used and relatively easy to learn but
are not readily used in the differential flatness framework. In this chapter, we show
how a non-parametric error model can be used to generate control inputs that follow
a specified trajectory. We additionally provide an extension to the proposed approach
that can deal with input-dependent model errors via numerical optimization. We validate
the control input generation strategy both in simulation and through experiments on a
quadrotor.

40

3.1 Introduction

0.0 1.8Time (s)

0.20

0.15

0.10

0.05

0.00

P
os

it
io

n
E

rr
or

(m
) No Disturbance Compensation

Basic Disturbance Compensation
Disturbance Dynamics Compensation (Ours)

Figure 3.1: Our experimental platform while executing an aggressive circle trajectory
(top) and an aggressive line trajectory (middle) using the proposed control input
generation strategy that is capable of compensating for dynamic and input-dependent
acceleration disturbances (FF5). Our method substantially reduces tracking error along
the aggressive line trajectory (bottom).

The contents of this chapter first appeared in [80].

3.1.2 Related Works

Accurate and aggressive quadrotor flight has been explored in [21, 61, 65, 85] among
others. As for many other robotic platforms, accurate modeling has been shown to im-
prove flight performance [7, 83]. Traditional non-learning based modeling can be achieved
via hand crafted experiments, calibration procedures, and computer-aided design [60].
Since this requires significant manual effort and engineering hours, there have been many
works exploring automatic parameter estimation methods [15, 16] and non-parametric
model learning methods [18, 53] for quadrotor control. In this thesis, we focus on non-
parametric model learning methods, since parameter learning methods can be limited in
their accuracy by the choice of parameterization [68]. There has also been work on
learning control input corrections for aggressive flight without learning a dynamical
model [56]. These methods are not a focus of this chapter since they can typically only
be applied while executing the trained trajectories or reference quantities. A learned

41

3.1 Introduction

dynamical model can be applied to any trajectory or reference.

Non-parametric model learning methods for robot control have been employed in [1,
27, 59, 79]. Model learning performed in real-time incrementally has been studied in
[6, 32, 37]. Florez, Bellot, and Morel [27] use Locally Weighted Projection Regression
(LWPR [90]) while Gijsberts and Metta [32] use Random Fourier Features [74], which
was extended to Incremental Sparse Spectrum Gaussian Process Regression (ISSGPR),
a Bayesian regression formulation, in Gijsberts and Metta [33]. Droniou, Ivaldi, Padois,
and Sigaud [20] evaluated LWPR and ISSGPR for the purposes of robot control and
found ISSGPR to perform better. In this chapter, we use both linear regression and
ISSGPR.

Once an accurate dynamical system model is known, a Model Predictive Control (MPC)
strategy can be used to optimize a desired cost function, subject to the dynamics [5, 18,
54, 57, 86]. These approaches often make approximations to ensure real time feasibility
[5, 18] or require expensive numerical optimizations [86]. Furthermore, Desaraju [18]
does not perform full inverse dynamics on the disturbance, which can lead to suboptimal
performance while tracking aggressive trajectories.

The differential flatness property of quadrotors has been widely exploited for accurate
trajectory tracking [23, 25, 42, 61, 65, 78]. Differential flatness of the quadrotor subject
to linear drag was shown in Faessler, Franchi, and Scaramuzza [23]. This extends the
applicability of the approach to a limited family of disturbances. Faessler, Franchi, and
Scaramuzza [23] do not address the issue of nonlinear disturbances as a function of
state and/or control input in the flatness computations. Issues arising from singularities,
commonly encountered during aggressive flight, were discussed and mitigated in Morrell,
Rigter, Merewether, Reid, Thakker et al. [65], increasing the robustness of the differential
flatness approach.

Although control inputs computed using the differential flatness framework will automat-
ically take into account dynamical model parameter changes, such as mass, inertia, etc.,
it is not clear how to incorporate non-parametric model corrections. In this chapter,
we build on the differential flatness formulation by extending it to compensate for
learned non-parametric dynamic model disturbances. Our approach can compensate
for arbitrary disturbances that are a function of vehicle position and velocity, as well
as control input dependent disturbances that are a function of vehicle orientation and
thrust. This increases the applicability of the approach to a much wider range of realistic
flight conditions.

Table 3.1 provides a high level comparison between our method and the methods of
Faessler, Franchi, and Scaramuzza [23] and Torrente, Kaufmann, Foehn, and Scaramuzza
[86]. [23] can only deal with linear disturbances and thus can neither deal with constraints
nor input-dependent disturbances. [86] can deal with nonlinear disturbances, input-
dependent disturbances, and constraints, owing to its use of numerical optimization
and the MPC paradigm. Our method deals with both nonlinear disturbances and input-
dependent disturbances in an efficient matter, but cannot easily handle state or control
input constraints.

42

3.2 Method

Table 3.1: A high level comparison between the proposed and two representative methods

Capability [23] [86] Ours
Nonlinear × ✓ ✓
Efficient ✓ × ✓

Constraints × ✓ ×
Input-dependent

disturbances × ✓ ✓

3.2 Method

We first introduce the problem statement in Section 3.2.1. Section 3.2.2 details our
approach for compensating for dynamic disturbances that can be a function of vehicle
position, vehicle velocity, or other quantities that are independent of the applied control
inputs. Section 3.2.3 extends the approach to compensate for disturbances that are input-
dependent and can be a function of e.g. the applied vehicle thrust or vehicle orientation.
Finally, Section 3.2.4 describes the model learning approach.

3.2.1 Problem Statement

Assume we are given a desired position over time, pref(t) ∈ R3, along with its first
four time derivatives, the velocity, acceleration, jerk, and snap: vref(t), aref(t), jref(t),
sref(t).

Equation (3.1) shows the standard acceleration model of a quadrotor, as introduced in
Section 2.1, augmented with an additive acceleration error term fe.

a = uz + g + fe(η, u) (3.1)

Here u ∈ R is the commanded body acceleration, z ∈ R3 is the body z-axis (||z|| = 1),
g =

[
0 0 −g

]⊤ is the gravity vector, and fe ∈ R3 is an additive acceleration error
model that can, in general, be a function of both vehicle state η and control input
u.

The objective is to compute the body acceleration u, body z-axis z, angular velocity ω,
and angular acceleration ω̇ such that integrating ω̇ forwards in time twice results in an
orientation with z as the z-axis and that the vehicle acceleration, which is a function of
uz, equals the desired vehicle acceleration ad(t). This will ensure that the vehicle follows
the specified trajectory xd(t). Note that while z and ω are not true control inputs
to the system, they are necessary as feedforward references to the attitude feedback
controller. Once the body acceleration u and angular acceleration ω̇ are computed, they
are multiplied by mass and inertia and used as the feedforward force and torque in the
position and attitude feedback controllers respectively.

43

3.2 Method

3.2.2 Input-independent Error Compensation

The simplest version of our control input generation strategy assumes that the distur-
bance model fe is a function of the vehicle position and velocity only: fe(x, ẋ). In this
case, the desired acceleration vector can be computed directly, as shown in (3.2).

uz = ad − g − fe(x, ẋ) (3.2)

Since z must be of unit length, both u and z can be computed from uz by computing
the magnitude and normalizing.

The angular velocity and angular acceleration are found by first computing the first and
second time derivatives of z.

Differentiating (3.2) in time results in

u̇z + uż = jd −
∂fe
∂x

ẋ− ∂fe
∂ẋ

ẍ = jeff
d (3.3)

Since z is of unit length, and it must remain so, it must be perpendicular to ż. Thus
taking a dot product of (3.3) with z allows us to find u̇.

u̇ = jeff
d

⊤
z (3.4)

Inserting u̇ into (3.3) gives us ż.

ż =
1

u

(
jeff
d −

(
jeff
d

⊤
z
)
z
)

(3.5)

The body angular velocity can be extracted from ż by first defining the body x and
body y-axes using a desired vehicle yaw, then projecting ż onto those axes. See Section
2.2.2 for the details.

To find z̈, we differentiate (3.3).

üz + 2u̇ż + uz̈ = sd − f̈e(x, ẋ) = seff
d (3.6)

The second time derivative of the learned disturbance fe is shown in (3.7). Note that
the second partial derivative of the error model with respect to its vector inputs is a 3rd
order tensor.

f̈e =

(
∂2fe
∂x2

ẋ+
∂2fe
∂xẋ

ẍ

)
ẋ+

∂fe
∂x

ẍ+(
∂2fe
∂ẋx

ẋ+
∂2fe
∂ẋ2

ẍ

)
ẍ+

∂fe
∂ẋ

...
x (3.7)

Noting that differentiating z⊤ż = 0 implies z⊤z̈ = −ż⊤ż and again taking a dot
product with z, we can compute ü.

ü = seff
d

⊤
z + uż⊤ż (3.8)

44

3.2 Method

Inserting ü into (3.6) gives us z̈.

z̈ =
1

u

(
seff
d − üz − 2u̇ż

)
(3.9)

To compute the body angular acceleration from z̈, we proceed as described in Section
2.2.2.

Note that the above equations for ż and z̈ are similar to those derived in Section 2.2.2
with the difference that here, the first and second derivatives of the learned dynamics
model are incorporated. In this way, the control inputs generated anticipate changes in
the disturbance.

One practical issue that arises is that the vehicle acceleration, ẍ, and jerk, ...
x , are not

readily available during operation. Computing them from odometry by taking finite-
differences will introduce noise. To alleviate this in our experiments, we use the acceler-
ation and jerk demanded by the trajectory, which are good approximations of the true
vehicle acceleration and jerk when tracking error is low.

3.2.3 Input-dependent Error Compensation

In many cases, additive dynamics model errors are a function of the applied control input
and vehicle orientation, in addition to the vehicle position and velocity. For example, if
the mass of the vehicle is not accurately known (or alternatively, the actuators are not
properly modeled), the disturbance will be a linear function of the applied acceleration.
The input-dependent acceleration model is shown in (3.10).

uz = ad − g − fe(η,u) (3.10)

Here, η =
[
x ẋ

]⊤ contains the vehicle position and velocity and u = uz.

Without assuming a particular form for the additive error term fe, it is not possible to
solve for the required acceleration and orientation analytically. We must resort to solving
the problem numerically. Interestingly however, once a solution for the acceleration and
orientation is found, the rest of the control inputs can be found analytically in a method
similar to the input-independent case described above.

We first rewrite the acceleration model as the functional equation f(u, t) = 0 that is
only a function of u and time. We compute the time derivative of u by taking a derivative
of the above equation and solving the resulting linear system.

ḟ(u, t) =
∂f

∂u
u̇+

∂f

∂t
= 0 (3.11)

u̇ = −
(
∂f

∂u

)−1 ∂f

∂t
(3.12)

45

3.2 Method

For our acceleration model, f(u) = u + g + fe(η,u) − ad. The necessary derivatives
are shown in (3.13) and (3.14).

∂f

∂u
= I3 +

∂fe
∂u

(3.13)

∂f

∂t
=
∂fe
∂η

η̇ − jd (3.14)

To find ü, we take a derivative of (3.11) and again solve the resulting linear system.

f̈(u, t) =

(
∂2f

∂u2
u̇+ 2

∂2f

∂u∂t

)
u̇+

∂f

∂u
ü+

∂2f

∂t2
(3.15)

ü =

(
∂f

∂u

)−1(
−
(
∂2f

∂u2
u̇+ 2

∂2f

∂u∂t

)
u̇− ∂2f

∂t2

)
(3.16)

The necessary derivatives for our acceleration model are shown in (3.17), (3.18), and
(3.19).

∂2f

∂u2
=
∂2fe
∂u2

(3.17)

∂2f

∂u∂t
=

∂2fe
∂u∂η

η̇ (3.18)

∂2f

∂t2
=

(
∂2fe
∂η2

η̇

)
η̇ +

∂fe
∂η

η̈ − sd (3.19)

To compute ż from u̇, we take a derivative of u = uz and proceed as before, by
projecting onto z and solving first for u̇.

u̇ = u̇z + uż (3.20)

u̇ = u̇⊤z (3.21)

ż =
1

u
(u̇− u̇z) (3.22)

To compute z̈ from ü, and the angular velocity and angular acceleration, we follow the
same approach as for the input-independent case.

It should be noted that this approach requires the existence of a solution to ∂f
∂u
u̇ = ∂f

∂t

and the analogous equation for ü. Solutions will only fail to exist when the estimated
disturbance model is strong enough to completely negate the acceleration imparted by
u. This may be a concern when learning a model from data, but in practice has not
occurred in our experiments.

46

3.3 Experiments

3.2.4 Model Learning

To estimate fe from vehicle trajectory data, we fit a model to differences between the
observed and the predicted acceleration at every time step. The observed acceleration
is computed using finite-differences of the estimated vehicle velocity while the predicted
acceleration is uz + g.

In principle, any regressive model whose derivatives are available can be used.

3.3 Experiments

We first evaluate the proposed approach on a simulated 2D quadrotor that is subjected
to a series of input-independent and input-dependent disturbances. We then evaluate
how the approach reduces tracking error on a quadrotor executing aggressive trajecto-
ries.

3.3.1 Simulation

The 2D planar quadrotor captures many of the important dynamics present in the 3D
quadrotor. Namely, orientation and acceleration are coupled. In fact, the motion of a 3D
quadrotor moving in a vertical plane, e.g. in a straight line trajectory, can essentially
be described with the 2D quadrotor. As such, we believe a planar simulation is an
appropriate testbed for our method.

The 2D quadrotor force model is shown in Fig. 3.2. The dynamics are shown in (3.23)
– (3.25), where F is the applied body force and τ is the applied body acceleration. The
mass, m, was set to 4.19 kg, gravity g to 10.18m/s2, and inertia I to 0.123 kgm2.

θ

F

τ

mg

z

x

Figure 3.2: Force diagram of the 2D quadrotor used in the simulation experiment. F and
τ are the control inputs.

mẍ = −F sin(θ) (3.23)
mz̈ = F cos(θ)−mg (3.24)

Iθ̈ = τ (3.25)

47

3.3 Experiments

We subject the simulated quadrotor to disturbances selected from Table 3.2. Disturbance
1 is constant and emulates a fixed force field in the x direction, e.g. due to wind. It
is not input-dependent and is not dynamic since it does not change along with the
vehicle state. Disturbance 2 is velocity dependent and emulates drag in the x direction.
Disturbance 3 depends on the vehicle angle and is thus input-dependent. Disturbance
4 is velocity dependent and emulates drag in the z direction. Disturbance 5 is a mass
perturbation that adds a disturbance linear in the applied acceleration, which makes it
input-dependent.

Table 3.2: Disturbances used in the 2D quadrotor simulation experiment

No. Effect Input-dependent? Dynamic?
1 ẍ -= 4.1 no no
2 ẍ -= 3.1ẋ no yes
3 ẍ += 1.4 sin(θ) yes yes
4 z̈ -= 3.1ż no yes
5 m += 2 yes yes

The vehicle is given a desired trajectory that takes it from x = 0, z = 0, to x = 1, z = 1
in one second. The trajectories in x and z are both 7th-order polynomials that have the
velocity, acceleration, and jerk equal to zero at each of their endpoints. This ensures that
the trajectory starts and ends with the vehicle at rest, at an angle of zero, and with an
angular velocity of zero. When Disturbance 1 is in effect, the vehicle’s angle is initialized
such that maintaining zero acceleration in z also maintains zero acceleration in x. This
ensures that the trajectory can be perfectly followed with correct control inputs despite
the constant acceleration disturbance in x. In all other cases, the vehicle state starts at
0.

We show x and z tracking error for the following feedforward input generation strategies
with and without feedback.

FF1) No disturbance learning

FF2) Basic disturbance compensation (no disturbance dynamics)

FF3) Disturbance compensation w/ numerical optimization

FF4) Dist. comp. w/ disturbance dynamics (ours)

FF5) Dist. comp. w/ num. opt. and disturbance dynamics (ours)

FF1 uses the feedforward generation strategy as presented in Section 2.3.1 and does
not do any regression for disturbance learning. FF2 and FF3 do not consider the
dynamics of the disturbance; they compute the angular velocity and angular acceleration
feedforward terms as in Section 2.2.2 while incorporating the learned disturbance in
the acceleration model, (3.1). FF4 is the proposed approach that deals with input-
independent disturbances while FF5 is the proposed approach that deals with input-
dependent disturbances.

48

3.3 Experiments

In this experiment, FF3 and FF5 solve (3.10) numerically using the modified Powell
method root finder in SciPy [45]. The initial guess for the optimization is the solution
from the previous timestep.

Position and angle feedback is provided by PD controllers with gains of 10 on position
and velocity errors, 300 on angle errors, and 30 on angular velocity errors. The position
PD controller output is added to the desired acceleration and the angle PD controller
output is added to the desired angular acceleration.

In all simulation experiments, the feature vector used for linear regression of model
errors is shown in (3.26). The features were hand selected to appropriately model the
disturbances in Table 3.2.

ϕ(x, z, θ, ẋ, ż, F) =
[
x, z, ẋ, ż, sin(θ), F sin(θ), F cos(θ), 1

]⊤ (3.26)

The learned model is thus
fe(η,u) = w⊤ϕ(η,u) (3.27)

w is the result of regressing the projected input data ϕ to the observed acceleration
errors and minimizing least squared error. In this experiment, w is recomputed after
every trajectory execution using data from all past executions. Results reported are on
the 3rd run, since we found that only two regression steps were needed to converge to
an accurate enough model. This is not surprising, as in this simulation there is no noise
and the features used can appropriately reproduce the applied disturbances.

Each control configuration is subjected to the following set of disturbance combina-
tions.

A) Disturbance 1

B) Disturbances 1, 2, and 4

C) Disturbances 3 and 5

D) Disturbances 1, 2, 3, 4, and 5

Error plots for each of the four disturbance sets without feedback control are shown
in Figs. 3.3a – 3.3d. Under only a constant disturbance (Fig. 3.3a), all disturbance
compensation strategies work well, since the disturbance is neither input-dependent
nor dynamic. When we introduce drag, a dynamic disturbance, in disturbance set B
(Fig. 3.3b), only the approaches that compensate for disturbance dynamics, FF4 and
FF5, achieve low error. Although basic disturbance compensation as in FF2 helps
considerably, accounting for disturbance dynamics improves performance further. Since
in disturbance set B, the disturbances are still input-independent, the use of numerical
optimization to solve the acceleration model (3.1) has no effect.

Under input-dependent disturbances, we see that FF5 is the only approach that achieves
low error. This is expected, as for both disturbance sets C and D, there are dynamic
and input-dependent disturbances present.

49

3.3 Experiments

0.0

0.2

0.4

0.6

X
(m

)

Disturbance Set A

FF1
FF2
FF3
FF4
FF5

0.0 0.25 0.5 0.75 1.0
Time (s)

0.0

0.4

0.8

1.2

Z
(m

)

(a) Errors for disturbance set A, containing
only a constant disturbance. All strategies
that compensate for the disturbance perform
well.

0.0

0.2

0.4

0.6

X
(m

)

Disturbance Set B

FF1
FF2
FF3
FF4
FF5

0.0 0.25 0.5 0.75 1.0
Time (s)

0.0

0.4

0.8

1.2

Z
(m

)
(b) Errors for disturbance set B, contain-
ing dynamic, but input-independent distur-
bances. FF4 and FF5, which compensate for
dynamic disturbances, perform the best.

0.0

0.2

0.4

0.6

X
(m

)

Disturbance Set C

FF1
FF2
FF3
FF4
FF5

0.0 0.25 0.5 0.75 1.0
Time (s)

0.0

0.4

0.8

1.2

Z
(m

)

(c) Errors for disturbance set C, containing
dynamic and input-dependent disturbances.
Only FF5 performs well.

0.0

0.2

0.4

0.6

X
(m

)

Disturbance Set D

FF1
FF2
FF3
FF4
FF5

0.0 0.25 0.5 0.75 1.0
Time (s)

0.0

0.4

0.8

1.2

Z
(m

)

(d) Errors for disturbance set D, which
contains all considered disturbances. FF5
performs the best.

Figure 3.3: Absolute x and z position error for all five feedforward strategies without
feedback control under each of the four disturbance sets.

50

3.3 Experiments

0.0

0.1

0.2

0.3

X
(m

)

Disturbance Set D with Feedback
FF1
FF2
FF3
FF4
FF5

0.0 0.25 0.5 0.75 1.0
Time (s)

0.0

0.1

0.2

0.3

Z
(m

)

Figure 3.4: Absolute x and z position error for all five feedforward strategies with
feedback control under disturbance set D. FF5 outperforms all others.

Table 3.3: Maximum absolute position errors, in meters, for each control strategy without
feedback in simulation

Dist. Set
Strategy

FF1 FF2 FF3 FF4 FF5

A 0.774 0.003 0.002 0.001 0.001
B 0.879 0.182 0.182 0.002 0.001
C 1.703 0.297 0.465 0.943 0.027
D 1.580 0.495 0.278 0.933 0.002

Error plots for disturbance set D with feedback control are shown in Fig. 3.4. We see
that although feedback can reduce the error, it is not enough to completely eliminate
the error. FF5 still outperforms the other methods, achieving nearly zero error in all
trials.

The maximum absolute position errors over the trajectory for all tested configurations
are listed in Tables 3.3 and 3.4.

3.3.2 Hardware

3.3.2.1 Platform & Setup

To validate the usefulness of dynamic disturbance compensation and input-dependent
disturbance compensation, we compare the five aforementioned feedforward generation
strategies, FF1 through FF5, on a 750 g quadrotor while following aggressive trajecto-
ries. Figure 3.5 shows the hardware platform and Fig. 3.1 shows the robot while following
aggressive circle and line trajectories.

51

3.3 Experiments

Table 3.4: Maximum absolute position errors, in meters, for each control strategy with
feedback in simulation

Dist. Set
Strategy

FF1 FF2 FF3 FF4 FF5

A 0.253 0.000 0.000 0.000 0.000
B 0.373 0.044 0.044 0.000 0.000
C 0.274 0.063 0.058 0.070 0.000
D 0.589 0.153 0.043 0.159 0.000

Figure 3.5: The 750 g quadrotor used for the hardware experiments. Onboard
computation is performed by an Odroid XU4 and the Pixhawk 1 Flight Controller.

Position, velocity, and yaw feedback is provided by a motion capture arena at 100Hz,
while pitch, roll, and angular velocity feedback is provided by a Pixhawk PX4 at 250Hz.
Feedback control is performed by a cascaded PD system following Section 2.3.1. The
feedforward terms are as computed by FF1 through FF5. FF3 and FF5 solve (3.10)
numerically using the Newton-Raphson method. All control computation is performed
onboard the vehicle’s Odroid XU4 computer. The position control loop runs at 100Hz
and the attitude control loop runs at 200Hz.

For the hardware experiments, we use three test trajectories: a 1.8 s straight line tra-
jectory, a circle trajectory, and a figure 8 trajectory. The trajectories are designed to be
near the limit of what the robot can feasibly track. Table 3.5 lists the three trajectories
and their maximum absolute derivatives.

Table 3.5: The aggressive trajectories used to evaluate the proposed approach and their
maximum derivatives

Traj. x (m) ẋ (m/s) ẍ (m/s2) x(3) (m/s3) x(4) (m/s4)
Line 2.7 3.28 6.26 24.31 216
Circle 2.0 2.75 7.56 21.43 64.35

Figure 8 2.0 2.75 7.15 21.43 59.25

52

3.4 Conclusion

3.3.2.2 Model Learning

We use linear regression as the model learning strategy in the hardware experiment.
Input data to the regression is a 6 dimensional vector consisting of the vehicle velocity
and the commanded acceleration vector u. The system starts with an uninitialized model
and uses a few test trajectories per trial to regress to the acceleration error. The error
model is then held fixed during the remaining trajectories used for error evaluation.
Although in principle, the model can be updated incrementally, keeping it fixed allows
for a fair comparison between the control strategies.

3.3.2.3 Results

For the line trajectory, each of FF1, FF2, FF4, and FF5 is evaluated four times. The
first four trajectories, run using FF1, are used to train the acceleration error model.
An overlay of the vehicle executing the 2.7m line trajectory can be seen in Fig. 3.1.
Absolute errors along the trajectory and errors along the vertical axis for the line
trajectory are shown in Fig. 3.6. FF1 performs the worst, especially along the vertical
axis, indicating that the robot is underestimating the control input required to maintain
hover. FF2 eliminates much of the error in the vertical axis, but still accumulates
significant error along the trajectory, rising above 10 cm consistently. FF4 and FF5
provide on average a 30% reduction in the average absolute x − y tracking error along
the trajectory when compared to FF2. This indicates that taking disturbance dynamics
into account can significantly improve tracking performance. This trajectory does not
provide sufficient clarity to determine the impact of FF5, input-dependent disturbance
compensation.

For the circle trajectory, all of the feedforward strategies are evaluated once, with FF3
and FF5 receiving two and four more trajectories respectively. An overlay of the vehicle
executing the circle trajectory can be seen in Fig. 3.1. Fig. 3.7 shows the resulting error.
As expected FF1, with no disturbance compensation, performs the worst. FF2, FF4,
and FF5 all perform similarly well, with FF2 achieving slightly lower vertical error than
the others. FF3 performs slightly worse here than FF2, suggesting that the numerical
routine may be failing to converge or that the input’s dependence on the acceleration
error has not been properly modeled.

Fig. 3.8 shows the error of FF1, FF2, FF4, and FF5 along the figure 8 trajectory
for one trial each. The improvement of FF4 over FF2 here is smaller than in the other
trajectories, suggesting that dynamic disturbances have relatively less of an impact when
following the figure 8, though more experimental trials are warranted to strengthen this
claim.

3.4 Conclusion

We have presented a method that allows compensation of dynamic disturbances through
evaluation of the derivatives of a learned model. We have shown in both simulation and
hardware experiments that our dynamic disturbance compensation method improves

53

3.4 Conclusion

0.0

0.1

0.2

0.3
Line Trajectory: Position Errors vs. Time

Time (s)

Z
(m

)
X

Y
(m

)

0.8 1.00.60.40.20.0 1.2 1.4 1.6 1.8

FF1
FF2
FF4
FF5

0.0

0.2

0.4

0.6

Figure 3.6: Average absolute errors during an aggressive straight line trajectory for four
of the five control strategies. Shaded regions denote the minimum and maximum errors
per timestep over four trials. Means (m) (± std (m)) over the 4 trajectories of the average
|x−y| error for FF1, FF2, FF4, and FF5 respectively are 0.120 ± 0.003, 0.067 ± 0.003,
0.047 ± 0.009, and 0.048 ± 0.10. Those for the average |z| error are 0.525 ± 0.023,
0.173 ± 0.034, 0.142 ± 0.025, and 0.173 ± 0.030.

performance over traditional disturbance compensation. We have also shown the useful-
ness of input-dependent disturbance compensation in simulation and preliminary results
on hardware. The versatility of the approach in a realistic robotics application has been
verified through evaluation on three distinct test trajectories.

Future work will evaluate nonlinear regression techniques, such as ISSGPR, on hard-
ware platforms, as well as consider regression techniques that explicitly optimize model
derivative accuracy. An interesting avenue of future study is to analyze theoretically how
the error model accuracy affects the performance of each of the feedforward generation
strategies. This is discussed in Appendix D. Lastly, we apply this technique to the
attitude dynamics of quadrotors, in order to fully compensate for vehicle disturbances
and modeling errors, in Chapter 5.

54

3.4 Conclusion

0.4

0.3

0.2

0.0

0.1

0.5

0.4

0.3

0.2

0.1

0.0

Circle Trajectory: Position Errors vs. Time

Time (s)

Z
(m

)
X

Y
(m

)

0

FF1
FF2
FF3
FF4
FF5

2 4 6 8 10

Figure 3.7: Average absolute errors during an aggressive circle trajectory for the
five control strategies. Shaded regions denote the minimum and maximum errors per
timestep. Avg. |x− y| errors (m) for FF1, FF2, FF3, FF4, and FF5 are 0.118, 0.071,
0.103, 0.069, and 0.076, respectively, while avg. |z| errors (m) are 0.41, 0.084, 0.122,
0.069, and 0.066, respectively.

55

3.4 Conclusion

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0

Figure 8 Trajectory: Position Errors vs. Time

Time (s)

Z
(m

)
X

Y
(m

)

0 2 4 6 8 10

FF1
FF2
FF4
FF5

Figure 3.8: Errors during an aggressive figure 8 trajectory for four of the five control
strategies. Avg. |x−y| errors (m) for FF1, FF2, FF4, and FF5 are 0.105, 0.076, 0.063,
and 0.059 respectively, while avg. |z| errors (m) are 0.473, 0.064, 0.064, and 0.088,
respectively.

56

4chapter

Feedback Linearization for Quadrotors
with Model Learning and Delay

Compensation

This chapter enhances the feedback linearization controller for quadrotors with a learned
acceleration error model. Feedback linearization controllers are theoretically appealing
but their performance suffers on real systems, where the true system does not match
the known system model. We take a step in reducing these robustness issues by learning
an acceleration error model, applying this model in the position controller, and further
propagating it forward to the attitude controller. We show how this approach improves
performance over the standard feedback linearization controller in the presence of un-
modeled dynamics and repeatable external disturbances in both simulation and hardware
experiments.

4.1 Introduction

In the previous chapter, we showed how model learning can be used to improve the
trajectory tracking performance of the traditional cascaded quadrotor controller. In this
chapter, we improve the quadrotor feedback linearization controller with a thrust delay
model and a learned acceleration error model, analogous to the one for the cascaded
controller.

Many practical aerial robotics applications use vision-based algorithms for state esti-
mation [9, 84]. These algorithms can be brittle to environmental conditions and can
generate drifting or discontinuous state estimates. Similarly, GPS-based state estimation
can exhibit jumps when the signal quality is degraded, leading to jumps in tracking
error. Unanticipated tracking error can also arise from gusts of wind and other external
disturbances. Thus, the control algorithms used must be able to handle both poorly
estimated dynamics and jumps in the state estimate.

By far the most common quadrotor feedback controller discussed in the literature and
employed in practice is the cascaded controller. Such cascaded controllers often make the
assumption that the inner attitude control loop can track references much faster than
the outer position control loop. While approximately correct, this assumption introduces

57

4.1 Introduction

Position (x)

D
is

tu
rb

an
ce

Fo
rc

e
(f
e
(x
))

Flying at Velocity ẋ

ḟe(x) →
FL
ω̇ (Control Input)

ḟe(x) =
∂fe(x)

∂x
ẋ

fe(x)

ω̇
∂fe(x)

∂x

Figure 4.1: An illustration of the proposed acceleration disturbance compensation
method. The vehicle is flying with velocity ẋ head on into a strong wind field. The
acceleration disturbance from the wind field is modeled as a function fe(x) that depends
on the vehicle position among other quantities. Using the derivatives of the learned
model, ∂fe(x)

∂x
, and the vehicle velocity ẋ, the disturbance jerk ḟe(x) can be computed.

The disturbance jerk is then used in a feedback linearizaton (FL) controller that computes
the angular acceleration control input ω̇ to mitigate the effects of the wind.

non-ideal characteristics in flight during aggressive or highly dynamic vehicle maneuvers,
where the attitude tracking error is likely to be large. In contrast, feedback linearization
exactly linearizes the quadrotor system, leading to a linear error response.

A linear error response is advantageous for several reasons. First linear controllers are
easy to tune using well known traditional control techniques such as LQR and pole place-
ment. Second, a linear error response ensures exponential convergence to the reference
state. For example, for a quadrotor, a step input in position results in the vehicle taking
the linear path connecting the start and end positions. Further, any jumps in the state
estimate, or disturbances causing large transient error, will be handled linearly. The
traditional cascaded quadrotor controllers do not have this property and their use may
result in instability when the error is large.

However, feedback linearization is known to be brittle when the dynamical model of the
system is not well known. In this chapter, we derive a feedback linearization controller
for the quadrotor and show how it can be used with a learned acceleration error model
to improve performance in the presence of unmodeled or mismodeled dynamics and
external disturbances. We use incremental linear regression with a nonlinear feature
space to rapidly learn a disturbance model over the state-space online. This model and
its derivatives are then used in the feedback linearization transformations to account for
and anticipate changes in the disturbance, as shown in Fig. 4.1.

In addition to correcting for unmodeled acceleration, we also correct for thrust control
input delay. Specifically, we show that control input delay, as is always present in real

58

4.2 Related Works

systems, can significantly impact the performance of the quadrotor feedback linearization
controller, and is often not considered in quadrotor control system design. To mitigate
this, we augment the quadrotor model with a delay in the thrust control input, and
investigate the performance of the resulting feedback linearization controller in both
simulation and hardware.

The contributions of this chapter are as follows:

1. A simple, Euler-angle free, derivation of the feedback linearization con-
troller for the quadrotor with torque control inputs.

2. A control input delay mitigation model for feedback linearization that im-
proves performance in hardware experiments.

3. A learned acceleration model correction that is used in the feedback lin-
earization controller to fully compensate for the unmodeled dynamics and external
disturbances. This is an extension of the work in [80] for the feedback linearization
controller.

4. An experimental analysis of the effectiveness of the linear acceleration error
compensation and control input delay mitigation model in the feedback lineariza-
tion controller.

The contents of this chapter first appeared in [82].

4.2 Related Works

Feedback linearization [44] has been applied to quadrotors since at least Mistler, Be-
nallegue, and M’Sirdi [64], although the same technique has been used much earlier in
the context of simplified helicopter models [47]. Chang and Eun [17] extends feedback
linearization to preserve the positive thrust constraint using a modified dynamic exten-
sion and apply feedback linearization chartwise to avoid singularities. Lee, Jin Kim, and
Sastry [49] compares feedback linearization to sliding mode control for a quadrotor in
the context of robustness, although a small-angle approximation is used.

Some existing works that present feedback linearization for quadrotors do not present
hardware results [3, 17], do not compare to cascaded approaches [2, 73, 91], or only use
angular velocity, not angular acceleration as control inputs [2, 73]. In this chapter, we
provide theoretic, simulation, and hardware comparisons to cascaded approaches, and
present the final control law with angular acceleration as a control input. We then extend
the feedback linearization approach to incorporate a delay in the thrust control input.
Further, our derivation does not use Euler angles or quaternions and instead uses the
simpler quantity of the body z-axis to handle the coupling between translational and
rotational dynamics.

Although differential flatness and feedback linearization are closely related, differential
flatness, as used in the context of feedforward linearization [39], only linearizes the system
at the desired state and corresponding input, whereas feedback linearization linearizes the

59

4.3 Method

system at the current state and input. Thus, differential flatness is unable to properly
linearize the system when there is large tracking error and control performance may
suffer.

Faessler, Falanga, and Scaramuzza [21] shows that modeling the torque control input
delay improves disturbance rejection, but does not consider the delay in the thrust control
input and [91] uses Pseudo Control Hedging (PCH) to mitigate delays in the control
inputs, among other unmodeled effects.

Model learning for feedback linearizing controllers has been explored for a long time.
As for general model learning for controls, the related works in this area can be divided
into those that learn forward models and those that learn inverse models. Yeşildirek
and Lewis [94] uses neural networks to learn the forward dynamics model, after which
it is used in feedback linearization and [87] learns a forward model using a Gaussian
Process (GP), whose uncertainty estimates are used to prove a convergence guarantee.
Spitzer and Michael [80] learns a forward model and uses its derivatives to compensate
for the disturbance dynamics. On the other hand, [92] and [36] learn an inverse model
for feedback linearization.

While model learning for quadrotors has been studied extensively, few have studied
model learning for the feedback linearizing controller. In this chapter, we learn a forward
model for the quadrotor feedback linearization controller and also consider the delay in
the thrust control input.

4.3 Method

Section 4.3.1 presents a simple, Euler-angle free derivation of the feedback linearization
controller for the standard quadrotor model with torque control inputs. Then, Section
4.3.2 augments the quadrotor model with a delay in the thrust control input and an ad-
ditive linear acceleration correction, and derives the corresponding feedback linearization
controller.

4.3.1 Feedback Linearization with Dynamic Extension

Feedback linearization [44] is a technique to a cancel out the nonlinearities of a system so
that it can be controlled using a linear controller. Two classes of feedback linearization
are full state linearization and input-output linearization. Full state linearization seeks to
render the entire state controllable via a linear system while input-output linearization
seeks to linearize the relationship between the control input and some specified output.
For the quadrotor, we will use input-output linearization to linearize the relationship
between the control inputs and the vehicle position.

Feedback linearization of multi-input and multi-output systems is contingent on the
existence of a well-defined vector relative degree. The relative degree is effectively, for
each dimension of the output vector, the number of times it should be differentiated such

60

4.3 Method

that all the control inputs that affect it appear1. When different control inputs affect
different order derivatives of a particular output, the system may fail to be input-output
linearizable. This is in fact the case with the quadrotor model (2.6).

To ensure that the system has a well-defined relative degree, we can delay the thrust
input u two times, so that it acts on the fourth derivative of position, as does the angular
acceleration α. Because delaying the thrust requires integration of a virtual control input
ü to compute the original system control input u, this converts the feedback linearizing
control law from a static feedback into a dynamic feedback. This technique is known as
dynamic extension of the original nonlinear system.

The augmented dynamic model, with two new virtual states ξ1 = u and ξ2 = u̇, and
virtual control input ν = ü, is shown below. We also take as output the vehicle position
p and yaw ψ.

x =

p
v
R
ω
ξ1
ξ2

 u =

[
ν
α

]
y =

[
p
ψ

]
(4.1)

ẋ =

v

ξ1Re3 + g
[ω]×R
α
ξ2
ν

 (4.2)

Placing (4.2) into control affine form yields

ẋ =

v

ξ1Re3 + g
[ω]×R

0
ξ2
0

+

0 0
0 0
0 0
0 I3×3

0 0
1 0

u. (4.3)

Now, we differentiate the position four times.

p(1) = v (4.4)

p(2) = ξ1Re3 + g = ξ1z + g (4.5)

p(3) = ξ2z + ξ1ż (4.6)
= ξ2z + ξ1(ω × z) (4.7)

p(4) = νz + 2ξ2ż + ξ1z̈ (4.8)
= νz + 2ξ2(ω × z) + ξ1 (α× z + ω × (ω × z)) (4.9)

1For the precise technical definition, see Section 5.1 of [44].

61

4.3 Method

Note that the control inputs ν and α both appear only in the fourth time derivative and
not in any of the lower order derivatives. This is the key property enabled by delaying
u.

For the yaw output ψ, we differentiate twice until the control input α, the angular
acceleration, appears. To do this, refer back to (2.30), (2.31), (2.24), and (2.25).

ψ̇ =
−x2ẋ1 + x1ẋ2

x2
1 + x2

2

(4.10)

ψ̈ =
−x2ẍ1 + x1ẍ2 − 2ψ̇(x1ẋ1 + x2ẋ2)

x2
1 + x2

2

(4.11)

ẋ = ω × x (4.12)
ẍ = α× x+ ω × ẋ (4.13)

We can construct the 4× 4 “relative degree matrix” A(x) and verify it is invertible for
a vector relative degree of {4, 4, 4, 2}.

A(x) =

[
LgνL

3
fp LgαL

3
fp

LgνLfψ LgαLfψ

]
(4.14)

=

[
∂p(3)

∂ξ2

∂p(3)

∂ω
∂ψ̇
∂ξ2

∂ψ̇
∂ω

]
(4.15)

=

z −ξ1[z]×

0 − x1x3
x21+x

2
2

− x2x3
x21+x

2
2

x2
1 + x2

2

 (4.16)

We see that for ξ1 ̸= 0 and x ̸= e3, A(x) is invertible, thus showing that (2.6) has a
vector relative degree of {4, 4, 4, 2}.

4.3.2 Feedback Linearization with Thrust Delay Model and Ac-
celeration Error Correction

In order to account for the vehicle’s rotor inertia, we add a first order exponential delay
model to the vehicle thrust, u.

u̇ = −τu(u− udes) (4.17)

Equation (4.17) provides a good approximation to the delay in the thrust produced by
the vehicle if the relationship between force and rotor speed is linear, as rotor speeds
have been experimentally shown to display first order exponential delay behavior [62]. To
keep the resulting feedback linearization controller simple, we do not model a delay in the
angular acceleration control input. The augmented system with the thrust control input

62

4.3 Method

delay component, and the thrust u added to the state vector, is shown in (4.18).

x =

p
v
R
ω
u

 , u =

[
udes

α

]
, ẋ =

v

uz + g + fe(ξ)
[ω]×R
α

−τu(u− udes)

 (4.18)

Here, udes is the desired linear acceleration along the body z-axis, and is closely tracked
by the estimated linear acceleration, u, according to a first order exponential delay model
with time constant τu, given by (4.17).

We apply feedback linearization with dynamic extension as in Section 4.3.1 to the above
quadrotor system model (4.18), with the objective of controlling the system position p
and yaw ψ. The relative degree of the quadrotor system (4.18) is not defined as written,
since udes first appears in the third derivative of the vehicle position, while α first appears
in the fourth derivative, through z̈.

As shown above, in the traditional quadrotor case, we need to delay the body thrust u
twice, so that it appears in concert with the angular acceleration. For the augmented
system model we consider, which models thrust delay, we only need to delay the linear
acceleration input once. For that, we move udes into the state and replace it with its
derivative, u̇des.

Now to solve for the control inputs u̇des and α, first differentiate the position output four
times.

ṗ = v (4.19)
p̈ ≡ a = uz + g + fe(ξ) (4.20)

p(3) ≡ j = u̇z + uż + ḟe(ξ) (4.21)

p(4) ≡ s = üz + 2u̇ż + uz̈ + f̈e(ξ) (4.22)

4.3.2.1 Computing Thrust Control Input udes

We can project the snap to the body z-axis to solve for ü, noting that z⊤ż = 0 and
z⊤z̈ = −ż⊤ż.

ü = s⊤z + uż⊤ż − f̈e(ξ)
⊤z (4.23)

=
(
s− f̈e(ξ)

)⊤
z + uż⊤ż (4.24)

We also note that, according to the thrust delay model (4.17),

ü = −τu(u̇− u̇des). (4.25)

Combining (4.24), (4.25), and (4.17), we have

u̇des =
(s− f̈e(ξ))

⊤z + uż⊤ż

τc
− τc(u− udes) (4.26)

63

4.3 Method

The thrust control input udes and the estimated thrust u are computed from (4.26) and
(4.17) respectively, using numerical integration.

4.3.2.2 Computing Angular Acceleration Control Input α

From (4.22), we can solve for z̈.

z̈ =
1

u

(
s− f̈e(ξ)− üz − 2u̇ż

)
(4.27)

Noting that ż = ω × z and z̈ = α× z + ω × ż, the vector triple product gives

z × z̈ = z × (α× z) + z × (ω × (ω × z)) (4.28)

= α− (α⊤z)z + (ω⊤z)z × ω (4.29)

Thus the angular acceleration less that along the z axis, or the angular acceleration along
the body x and body y axes, denoted αxy, can be found using

αxy = z × z̈ − (ω⊤z)z × ω (4.30)

=
1

u

(
z × (s− f̈e(ξ))− 2u̇(z × ż)

)
+ (ω⊤z)ω × z (4.31)

=
1

u

(
z × (s− f̈e(ξ))− 2u̇ωxy

)
+ (ω⊤z)ω × z (4.32)

The component of the angular acceleration along the body z-axis is undetermined by the
position and its derivatives and thus can be chosen to follow a desired yaw trajectory.
This is computed as in (2.46) with ẍ computed using (2.60).

αz = T −1
α (u, Ta(z, u), Tj(z, u, u̇, ω), sdes, Tψ(x), Tψ̇(x, ω), ψ̈des) (4.33)

Eqs. (4.26) and (4.32) together provide the control inputs that are needed to achieve
snap s. Snap is typically the result of a linear feedback controller that tracks a desired
position, velocity, acceleration, and jerk, as shown in (4.34), where xerr = x− xref.

sdes = −K1perr −K2verr −K3aerr −K4jerr + sref (4.34)

Gains for this controller, Ki ∈ R3×3, can be chosen by any linear control technique, such
as LQR and pole placement. When the acceleration and jerk are not readily available, as
is the case with most state estimators, Eqs. (4.20) and (4.21) can be used for feedback.
Further, to support implementation on an embedded platform, the disturbance model
fe and its derivatives can be evaluated on a ground control station. In that case, let
sff = −K1perr−K2verr+K3(aref−fe(ξ))+K4(jref− ḟe(ξ))+sref− f̈e(ξ) and the desired
snap becomes

sdes = sff −K3(uz + g)−K4(u̇z + uż) + f̈e(ξ) (4.35)

We can combine (4.35) with (4.32) to further simplify the expression for angular accel-
eration along the body x and y axes.

αxy =
1

u

(
z × sff −K3z × g − 2u̇ωxy

)
−K4ω

xy − (ω⊤z)z × ω (4.36)

64

4.3 Method

To obtain the control input αxy in the body frame, we left-multiply (4.36) by R⊤
W to

obtain.

αxyB =
1

u

(
e3 × sff

B −K3e3 × gB − 2u̇ωxyB
)
−K4ω

xy
B − ωzBe3 × ωB (4.37)

We similarly transform the computation of u̇des into the body frame, after combining
(4.35) with (4.26), for a simpler implementation on an embedded platform.

u̇des =
sff⊤
B e3 −K3(u+ g⊤B e3)−K4u̇+ u||ωxyB ||2

τc
− τc(u− udes) (4.38)

Note that implementing (4.37) and (4.38) only requires knowing the gravity vector, the
angular velocity, and sff in the body frame. The gravity vector in the body frame is
directly measured by an IMU that is at the center of the body frame and the angular
velocity in the body frame is directly measured by a gyroscope that is anywhere on the
rigid body. Further, this controller requires no trigonometric operations, such as sin, cos,
tan, or their inverses, and can run very quickly on an embedded system. Notably, the
control law does not depend on the yaw trajectory of the vehicle.2

To compute the desired yaw acceleration ψ̈des needed to implement (4.33), a linear PD
controller in the flat yaw space is used.

ψ̈des = −kp,ψ(Tψ(x)⊖ ψref)− kd,ψ(Tψ̇(x, ω)− ψ̇ref) + ψ̈ref (4.39)

(4.39) makes use of Tψ defined in (2.29) and Tψ̇ defined in (2.30). Here, ⊖ is a difference
function defined on S1 and ensures the shortest path around the circle is taken.

More advanced difference functions on S1 that take into account the angular velocity
can also be used. This can be useful if large angular velocities around z are to be
encountered by enabling the planning of a smooth “unwinding” of the state space without
an oscillating angle feedback term. The angle feedback component can “plan” to bring the
yaw to an angle several revolutions away from the current angle, in order to accommodate
the gradual reduction in angular velocity of a rapidly spinning robot. See [8] for more
details about the challenges that spaces such as S1 pose for continuous and stable
control.

4.3.3 Gain Matching

While the cascaded control architecture uses gains on position, velocity, orientation, and
angular velocity, the feedback linearization controller uses gains on position, velocity, ac-
celeration, and jerk. When comparing the control methods experimentally, it is desirable
that the first order response is the same between both. Here we linearize both control
methods at hover and provide relationships between cascaded control gains and feedback
linearization gains.

2Although the full orientation is required to compute sff in the body frame if the position feedback
and trajectory planning are with respect to the fixed frame.

65

4.3 Method

Cascaded Controller The cascaded feedback controller from (2.68) is shown below
for a zero trajectory reference at hover (ωdes = αdes = 0).

αcasc = −Kcasc
R eR(R,Rdes)−Kcasc

ω ω (4.40)

We choose the thrust vector error function (2.78) from Section 2.3.2.1 and recall ades

from (2.62), Rdes from (2.65), and zdes = T −1
z (ades) from (2.33).

eR(R,Rdes) = zdes × z (4.41)
ades = −Kcasc

p p−Kcasc
v v (4.42)

zdes =
ades − g

||ades − g||
(4.43)

To compute the gain of the angular acceleration control input with respect to the
position, we take the partial derivative of (4.40).

∂αcasc

∂p
= −Kcasc

R

∂eR
∂zdes

∂zdes

∂ades

∂ades

∂p
(4.44)

The derivative of a normalized vector n̂ = n√
n⊤n

∈ R3, such as zdes, can be derived using
the inverse vector triple product.

D(n̂)x =
||n||I3 − n

(
1
2

)
1

||n||(2)n
⊤

||n||2
x

D(n̂)x =
I3 − n̂n̂⊤

||n||
x

D(n̂)x =
x− n̂n̂⊤x

||n||

D(n̂)x =
(n̂⊤n̂)x− (n̂⊤x)n̂

||n||

D(n̂)x =
n̂× (x× n̂)

||n||

D(n̂)x = − n̂× (n̂× x)

||n||

D(n̂)x = −
[n̂]2×
||n||

x

=⇒ D(n̂) = −
[n̂]2×
||n||

(4.45)

Now expanding (4.44),

∂αcasc

∂p
= −Kcasc

R (−[z]×)

(
−

[zdes]
2
×

||ades − g||

)
(−Kcasc

p). (4.46)

66

4.3 Method

Evaluating the above at hover with p = 0, v = 0, and thus zdes = e3, and z = e3 results
in

∂αcasc

∂p

∣∣∣∣
hover

=
1

||g||
Kcasc
R [e3]

3
×K

casc
p (4.47)

= − 1

||g||
Kcasc
R [e3]×K

casc
p . (4.48)

Analogously for velocity, we have

∂αcasc

∂v

∣∣∣∣
hover

= − 1

||g||
Kcasc
R [e3]×K

casc
v . (4.49)

For tilt z, we have

∂αcasc

∂z
= −Kcasc

R

∂eR
∂z

(4.50)

= −Kcasc
R [zdes]× (4.51)

∂αcasc

∂z

∣∣∣∣
hover

= −Kcasc
R [e3]× (4.52)

and for angular velocity ω,

∂αcasc

∂ω
= −Kcasc

ω . (4.53)

Feedback Linearization To compute the linearization of the feedback linearization
controller, differentiate (4.36).

∂αfblin

∂p
=

1

u
[z]×

∂sff

∂p
(4.54)

=
1

u
[z]×(−K fbl

1) (4.55)

At hover, u = ||g||, and z = e3.

∂αfblin

∂p

∣∣∣∣
hover

= − 1

||g||
[e3]×K

fbl
1 (4.56)

Analogously, the gain for velocity is

∂αfblin

∂v

∣∣∣∣
hover

= − 1

||g||
[e3]×K

fbl
2 . (4.57)

Differentiating with respect to z, we have

∂αfblin

∂z
=

1

u

(
−[sff]× +K fbl

3 [g]×
)
+ ω⊤z[ω]× − ω (z × ω)⊤ (4.58)

67

4.3 Method

At hover, sff = 0, u = ||g||, and ω = 0, and

∂αfblin

∂z

∣∣∣∣
hover

= −K fbl
3 [e3]×. (4.59)

For angular velocity, we have

∂αfblin

∂ω
= −2u̇

u
I3 −K fbl

4 − (ω⊤z)[z]× − z(z × ω)⊤, (4.60)

which at hover is

∂αfblin

∂ω

∣∣∣∣
hover

= −K fbl
4 . (4.61)

Gain Relationships Now equating (4.48) with (4.56), (4.49) with (4.57), (4.52) with
(4.59), and (4.53) with (4.61), we get the following gain relationships.

K fbl
1 = Kcasc

R Kcasc
p (4.62a)

K fbl
2 = Kcasc

R Kcasc
v (4.62b)

K fbl
3 = Kcasc

R (4.62c)

K fbl
4 = Kcasc

ω (4.62d)

Since the feedback linearization controller controls the first derivative of the thrust, the
first order response cannot be matched to that of the cascaded controller, which controls
the thrust directly.

4.3.4 Acceleration Model Learning

To estimate fe(ξ) from vehicle trajectory data, we fit a model to differences between
the observed and the predicted acceleration at every time step. We use a subset of
the state as input to the model: the position p and velocity v. Although this limits
the types of disturbances that can be accounted to those that are functions of vehicle
position and velocity, and notably not disturbances that are functions of the control
input, this is a suitable choice to highlight the proposed control algorithm, given the
experiments performed in Section 4.4. The observed acceleration is computed using
finite-differences of the estimated vehicle velocity sampled in intervals of ∆T , while
the predicted acceleration is uz + g. Thus, the training examples used to fit the model
are pairs of data points (ξt, yt), defined below.

ξt =
(
pt vt

)⊤ (4.63)

yt =
1

∆T
(vt − vt−1)− (ut−1zt−1 + g) (4.64)

For the experiments in this chapter, we use Incremental Sparse Spectrum Gaussian
Process Regression (ISSGPR) [33] as the regression strategy. ISSGPR projects the input

68

4.4 Experiments

data into a nonlinear feature space defined by sinusoids with random frequencies [74] and
then applies regularized linear regression incrementally using rank-one matrix updates.
Let dx be the dimension of the input vector ξ and let N be the number of random
frequencies chosen. The random frequencies Ω ∈ RN×dx can be generated by multiplying
an N by dx matrix of univariate Gaussians by diag(M), where each entry in M ∈ Rdx is
the inverse of the characteristic length scale of the corresponding input dimension. The
length scales allow for the adjustment of the relative importance of each input dimension
and are thus hyperparameters that need to be adapted to the application.

The output of the model is shown below. Here, W ∈ R2N×3 is the matrix of weights
learned by linear regression, where each column corresponds to a dimension in the
output.

fe(ξ) =
1√
N
W⊤

(
cos(Ωξ)
sin(Ωξ)

)
(4.65)

The derivatives of fe with respect to the input ξ, which are required to implement the
proposed control strategy, are shown below. Here, ξk is the k’th entry of ξ, Ωk is the
k’th column of Ω, and ⊙ is the Hadamard, or component-wise, product.

∂fe(ξ)

∂ξi
=

1√
N
W⊤

(
− sin(Ωξ)⊙ Ωi

cos(Ωξ)⊙ Ωi

)
(4.66)

∂2fe(ξ)

∂ξiξj
=

1√
N
W⊤

(
− cos(Ωξ)⊙ Ωi ⊙ Ωj

− sin(Ωξ)⊙ Ωi ⊙ Ωj

)
(4.67)

Using (4.66) and (4.67), ḟe and f̈e can be computed using the chain rule and knowledge
of ξ̇ and ξ̈, as depicted in Fig. 4.1.

4.4 Experiments

We aim to show the following three results:

R1 The feedback linearization controller presented handles large step responses with
less deviations along unexcited axes than traditional cascaded approaches.

R2 Accounting for rotor delay using a delayed thrust model increases performance of
the feedback linearization controller during step inputs in the presence of control
input delays.

R3 The learned acceleration error model improves control performance of the feed-
back linearization controller in the presence of unmodeled dynamics and external
disturbances.

69

4.4 Experiments

0.0

0.2

0.4

X
(m

)

Position and Yaw Step (Simulation)

0

1

2

3

Y
(m

)

−0.6

−0.4

−0.2

0.0

Z
(m

)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s)

0.0

π/3

2π/3

π

Y
aw

(r
ad

)

Discont. SO(3) PD
Reduced Att. PD
Feedback Lin.

Figure 4.2: Position and yaw during a step from (x, y, z, ψ) = (0, 0, 0, 0) to (0, 3, 0, π −
0.01) for a traditional cascaded controller (blue), reduced attitude control (orange), and
feedback linearization (green). Only feedback linearization follows the straight path from
p = (0, 0, 0) to (0, 3, 0).

4.4.1 Position and Yaw Step Response

To highlight the advantages of feedback linearization over traditional controllers during
large tracking error, we simulate the vehicle executing a simultaneous step along position
and yaw. We compare against traditional discontinuous SO(3) control [29], as well as
reduced attitude control [12]. The simulation performance of feedback linearization and
the baseline controllers for a step response from (x, y, z, ψ) = (0, 0, 0, 0) to (0, 3, 0, π −
0.01) is shown in Fig. 4.2. The traditional attitude controller, which uses a metric on
SO(3), suffers deviations along the x and z-axes, despite the position step lying along the
y-axes. Although reduced attitude control is able to reduce these deviations, feedback
linearization eliminates them entirely, thus showing R1.

4.4.2 Control Input Delay

To test the performance of the control input delay mitigation strategy on the hardware
vehicle, we execute ten 3m steps in position with the feedback linearization controller and
various values of τu. Figure 4.3 shows the trajectory side view for the 3m steps executed
on the hardware platform. Ten trials are executed for the following: feedback linearization

70

4.4 Experiments

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (s)

−0.3

−0.2

−0.1

0.0

0.1

Z
(m

)

0.0

1.5

3.0

Y
(m

)

Sideways Step 3 m (Hardware)

Desired
FL, no delay comp
FL, τu = 20

FL, τu = 10

FL, τu = 5

PD

Figure 4.3: Position during ten 3m sideways steps on the hardware platform for various
feedback linearizaton configurations. Our proposed approach, shown here assuming a
thrust delay with time constants of 5, 10, and 20, maintains height better, and reduces
oscillations compared to standard feedback linearization. The traditional cascaded PD
controller maintains height better than all tested feedback linearization methods.

without delay compensation, feedback linearization assuming thrust control input delays
of τ = 5, 10, and 20, and traditional cascaded PD control. We see that considering
the thrust input delay significantly reduces the altitude oscillations and altitude error
when compared to standard feedback linearization, supporting R2 on the hardware
platform. However, the traditional PD controller still maintains height better than all
tested feedback linearization methods. For the remaining hardware experiments, we use
τu = 10, as it provides good reduction in oscillations, without greatly overestimating the
delay.

4.4.3 Learned Acceleration Error Model

We test the effectiveness of the learned acceleration error model in the presence of
unmodeled dynamics and external disturbances by attaching a cardboard plate to a
quadrotor weighing 650 g and flying in a turbulent wind field, as shown in Fig. 4.4.
The cardboard plate serves to accentuate disturbances due to the wind field. Position
feedback is provided at 100Hz and sent to the vehicle via a 2.4GHz radio, while attitude
control is run onboard the vehicle at 500Hz.

71

4.4 Experiments

Wind

Figure 4.4: The quadrotor vehicle during the yaw in place experiment, with wind from
two industrial fans coming from the left (top), the cardboard plate attached to amplify
wind effect (bottom left), and the vehicle hovering with the cardboard plate without
wind (bottom right).

Feedback linearization gains for the vehicle are

K1 = diag(1040, 1040, 1900) (4.68)
K2 = diag(600, 600, 1140) (4.69)
K3 = 190I3 (4.70)
K4 = 25I3 (4.71)
kp,ψ = 30 (4.72)
kd,ψ = 10. (4.73)

These were chosen to provide the same first order response in angular acceleration as

72

4.4 Experiments

X
(m

)

−1.5

−1.0

−0.5

0.0

0.5

1.0 Y (m)
−0.5

0.0
0.5

1.0
1.5

Z
(m

)

0.0

0.5

1.0

1.5

2.0

Weave Trajectory

Figure 4.5: The 3D weave trajectory used in the experimental evaluation of the control
strategy with per-axis shadows shown in gray.

the cascaded gains

Kp = diag(5.47, 5.47, 10.0) (4.74)
Kv = diag(3.16, 3.16, 6.0) (4.75)
KR = diag(190, 190, 30) (4.76)
Kω = diag(25, 25, 10) (4.77)

using (4.62a) - (4.62d). Note that the first order response in thrust cannot be matched
as it is a dynamic first order process for the feedback linearization controller.

We test the approach in two scenarios:

1. 3D weave pattern through the wind field

2. Fast yaw in place in the wind field

The 25 s weave trajectory, shown in Fig. 4.5, has a maximum velocity of 2.7m/s, a
maximum acceleration of 5.5m/s2, and moves in a sinusoidal pattern along x, y, and z.
The equations for the x, y, and z positions are shown below, for t ∈ [0, 25].

x(t) = 1.0 cos(0.72πt) (4.78)
y(t) = 1.0 sin(0.48πt) (4.79)
z(t) = 0.4 sin(0.72πt) (4.80)

For this experiment, the performance of the proposed model learning strategy is com-
pared to a controller using L1 Adaptive Control (L1AC) [63] for acceleration disturbance

73

4.4 Experiments

0 1 2 3 4 5 6 7 8

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

V
el

oc
it
y

E
rr

or
(m

/s
)

Velocity Error during 3D Weave w/ Fans and Cardboard

PD
FL

L1AC
Model Learning

Figure 4.6: Smoothed velocity error for repeated trials of the 3D weave for the baseline
adaptive controller (blue, 9 trials) and the proposed model learning strategy (orange, 6
trials shown). Baseline PD methods are shown in lighter dashed lines, while the proposed
feedback linearization methods are solid. The model learning strategy reduces the mean
velocity tracking error by roughly 60% compared to the adaptive controller. As expected,
feedback linearization performs similar to cascaded control during trajectory tracking.

compensation and a cascaded PD controller running the model learning strategy from
[80]. Since we are correcting for model errors during trajectory following, a low tracking
error will mean that differences in feedback strategy are negligible, and we expect the
cascaded PD approach to perform similarly to the feedback linearization approach. For
this experiment, we use N = 50 random frequencies for ISSGPR and length scales of
1.0 for each dimension of the position and velocity. The velocity error during the weave
trajectories for each strategy is shown in Fig. 4.6. Only the second and third trials (each
trial consists of three circuits of the weave) for the two strategies using model learning are
included to highlight the performance after the acceleration error model has converged.
The model learning strategy is able to reduce the mean velocity error from 54 cm/s to
22 cm/s, a 60% improvement relative to the adaptive controller. As expected, feedback
linearization performs similarly to the cascaded approach, for both with and without
model learning. Fig. 4.7 shows the error of each of the four strategies per revolution.
While the adaptive methods’ errors remain high for each of the nine revolutions, the
model learning methods converge to their lowest error after only three revolutions.

For the second test, seen in Fig. 4.4, the vehicle yaws in place in the wind field at a rate
of 120 ◦/s for 4 revolutions. To enable the vehicle to model the changing acceleration
disturbance as the vehicle yaws, we include two extra features in ξ in addition to the

74

4.4 Experiments

1 2 3 4 5 6 7 8 9

Revolution No.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
el

oc
it
y

E
rr

or
(m

/s
)

Velocity Error per Revolution during 3D Weave

PD
FL

L1AC
Model Learning

Figure 4.7: Average velocity error per revolution of the 3D weave for the baseline adaptive
controller (blue) and the proposed model learning strategy (orange). The model learning
strategy converges to its lowest error after three revolutions.

position and velocity: sin(ψ) and cos(ψ). The length scales used for this experiment are
5.0 for position and velocity and 0.5 for the yaw terms.

In this test, we compare the performance of the proposed model learning strategy with
L1 Adaptive Control as before, and as an ablation test, with the proposed strategy but
with disturbance dynamics neglected, i.e. ḟe = f̈e = 0.

The average speed during the experiment for all three strategies is shown in Fig. 4.8.
As before, the first trajectory for the model learning strategies is omitted, to remove
transients from the model learning process. The adaptive controller struggles to stay still
since it cannot react to the disturbance fast enough. The model learning strategies can
predict the disturbance ahead of time, and reduce the speed by roughly 50%, showing R3.
Compensating for disturbance dynamics helps to further reduce the speed error.

To gain insight into why model learning improves performance over the adaptive con-
troller, we can look at how well the learned models match the observed data. Figure 4.9
shows the raw acceleration disturbance measurements, the disturbance estimated by
the adaptive controller, and the disturbance predicted by our learned model for the
two hardware experiments. The adaptive controller’s disturbance estimate lags the true
disturbance, while the learned model’s prediction accurately captures the mean of the
disturbance, leading to superior control performance. Increasing the adaptation rate
(bandwidth) of the baseline disturbance estimator to attempt to reduce the lag would
introduce noise and instability into the system. The learning algorithm appropriately
averages sensor data to learn a smooth model from noisy input points.

75

4.4 Experiments

0 2 4 6 8 10 12

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5
Sp

ee
d

E
rr

or
(m

/s
)

Speed Error during Yaw in Place w/ Fans and Cardboard

L1AC Model Learning ML, no deriv

Figure 4.8: Smoothed speed error for multiple trials of the yaw in place test for
the baseline adaptive controller (blue), the proposed model learning strategy without
disturbance dynamics (green) and the proposed model learning strategy with full
disturbance dynamics compensation (orange). The model learning strategy is able to
stay still with roughly 50% lower speed compared to the adaptive controller. Including
disturbance dynamics further helps the vehicle maintain position.

4.4.4 Iterative Learning Control Application

We further test the feedback linearization controller combined with Iterative Learning
Control (ILC) [4]. The virtual linear system provided by feedback linearization is a
natural space to apply ILC corrections, which are computed under the assumption
of a linear system arising from the linearization of the full system along a trajectory.
We task the vehicle with carrying a heavy 300 g PVC pipe along an aggressive linear
trajectory, and compare the results against a cascaded controller running ILC. The ILC
for the cascaded controller corrects the desired body z-axis acceleration u and desired
angular acceleration α, while the ILC for feedback linearization corrects the desired snap
sdes.

Fig. 4.10 shows the position errors for both the cascaded controller and feedback lin-
earization and Fig. 4.11 shows the trajectory side view for both methods. Only feedback
linearization converges to the desired trajectory. The cascaded control method fails to
converge, likely because of the nonlinear relationship between the ILC corrections, u
and α, and the desired output, position p. This highlights one of the benefits that the
linearized system from feedback linearization can provide.

76

4.4 Experiments

0 1 2 3 4 5 6 7 8

Time (s)

−6

−4

−2

0

2

A
cc

el
.D

is
t.

Y
(m

/s
2
)

Acceleration Disturbance: 3D Weave

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

−4

−3

−2

−1

0

1

A
cc

el
.D

is
t.

Y
(m

/s
2
)

Acceleration Disturbance: Yaw in Place

Measured L1AC Model

Figure 4.9: The raw acceleration disturbance measurements (black), the disturbance
estimated by the adaptive controller (green), and the disturbance predicted by our
learned model (orange) for the weave (top) and yaw in place (bottom) experiments.
The disturbance predicted by the learned model captures the mean of the disturbance
well, while the disturbance estimated by the adaptive controller lags.

77

4.4 Experiments

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

0.0

0.5

P
os

it
io

n
E

rr
or

(m
)

ILC and Cascaded Control with Payload

Trial 1 (err: 0.40)
Trial 3 (err: 0.39)
Trial 5 (err: 0.36)
Trial 10 (err: 0.39)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (s)

0.0

0.5

P
os

it
io

n
E

rr
or

(m
)

ILC and Feedback Linearization with Payload

Trial 1 (err: 0.43)
Trial 3 (err: 0.16)
Trial 5 (err: 0.10)
Trial 10 (err: 0.06)

Figure 4.10: Position errors over time for trials 1, 3, 5, and 10 for both the cascaded
controller (top) and feedback linearization (bottom). Only feedback linearization achieves
low error and converges to the desired trajectory.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Y (m)

1.4

1.6

1.8

2.0

Z
(m

)

Trial 1

Trial 5

Trial 10

Trial 1
Trial 5

Trial 10

ILC w/ Payload: Trajectory Side View (10 Trials)
Desired
PD
Feedback Linearization

Figure 4.11: Trajectory side view during the ILC experiment. The traditional cascaded
controller (blue) does not converge to the desired trajectory, while feedback linearization
(orange) does.

78

4.5 Conclusion

4.5 Conclusion

We have presented a feedback linearization controller for the quadrotor that outper-
forms existing cascaded approaches during aggressive step responses in simulation (R1),
mitigates the negative impact of control input delays (R2), and reduces errors arising
from external disturbances through modeling and inversion of the learned disturbance
(R3). We have further validated the feedback linearization controller using a challenging
Iterative Learning Control experiment with a heavy payload.

Limitations arise from the need to model the disturbance as a function of the state space.
The current incremental strategy cannot properly handle time-varying disturbances
that often arise in practical conditions. Recent advances in deep learning can enable
more capable model learning methods that require less hand-engineered features and
parameters.

Future work should consider the delay in the angular acceleration control input, as well
as the delay in the thrust control input, which is considered here. Further, a theoretical
analysis of the control performance differences between feedforward linearization and
feedback linearization in the presence of model error will enable intelligent selection of
controllers and possible incorporation of uncertainty bounds into the control strategy.
This is considered in Appendix D.

79

5chapter

Model Learning for Quadrotor
Attitude Control

5.1 Introduction

The prior two chapters used model learning to learn a more accurate acceleration model
of the quadrotor. This chapter explores dynamical model learning for the rotational
dynamics of the quadrotor. Since the accuracy of the inner attitude controller directly
affects the accuracy of the outer position controller, model errors in the inner loop can
result in poor position tracking performance. Thus, improving the attitude dynamical
model by learning a more accurate angular acceleration model should improve the overall
control performance of the vehicle.

5.1.1 Problem

Quadrotor aerial vehicles use an IMU tightly coupled with a high rate control loop
to allow precise and stable flight. Since attitude dynamics are faster than the position
dynamics, we seek to learn a dynamics model using the data available onboard the vehicle
firmware.

5.1.2 Challenges

5.1.2.1 Data

Data available on board the vehicle comes from an IMU. The IMU provides data at a
high rate, but also comes with several aspects that make it difficult to directly learn
models with:

1. Inherent sensor noise

2. Data biases, e.g. sensor scale errors, transform offsets

3. Time-dependence, e.g. temperature, biases exhibit random walks

4. Sources we are not interested in: vibration motion

Some of these challenges can be mitigated using calibration. For example, accelerometer
scale and gyroscope bias calibrations are an established step of preparing a vehicle for

80

5.2 Modeling

flight. However, the time-varying nature of these biases, for example due to temperature,
or noises due to the vibration, render calibration less effective than we would like.

5.1.2.2 Regression

Once a sanitized data stream is available, model learning approaches typically optimize
a model that predicts a desired quantity from a given “feature” quantity. Choosing the
features to regress against is a difficult problem broadly known as “feature selection”
and can have huge consequences on the accuracy of the model. An inherent difficulty is
the balance between model expressiveness and generalization. Too little features and the
model will not be able to explain any of the data. Too many features and the model will
“memorize” the data and fail to generalize (overfitting).

After feature selection, most regression algorithms have hyperparameters that greatly
impact performance. This necessitates hyperparameters optimization, which can be ex-
pensive or difficult to run online.

5.1.3 State of the Art

Established approaches, such as the Luenberger observer described in Section 2.4.2,
estimate point disturbances that can be used to mitigate errors that are constant over
time. However, these approaches fail when the model or disturbance rapidly changes.
Further, their performance does not improve over time as more data is collected.

5.1.4 Requirements

1. A model learning strategy that can accurately predict observed IMU data.

2. Model must incorporate high rate IMU data in real-time.

3. A controller that can use a learned model to improve control performance.

4. Model and controller pair must outperform reactive approaches (e.g. Luenberger
observer / L1AC).

5.2 Modeling

Following Section 2.1, we model the rotational dynamics as a rigid body. The Euler
equation (2.70) is used to compute the angular acceleration.

α = I−1 (τ − ω × Iω) = fnom(ω, τ) (5.1)

Here, we denote this nominal dynamics model by fnom, which is a function of the vehicle
angular velocity and the commanded torque.

We model the true angular acceleration of the robot as the sum of the nominal model
fnom and an additional error model ferr.

α = fnom(ω, τ) + ferr (5.2)

81

5.2 Modeling

5.2.1 Rotor Angular Momentum

In this section, we show that neglecting the angular momentum of the vehicle’s spinning
rotors can lead to large model prediction errors during aggressive yaw maneuvers.

To begin, we compute the vehicle’s total angular momentum L, considering the four
spinning rotors. Let ωi be the speed of rotor i and ωr = ω1 + ω2 − ω3 − ω4. We assume
that motors 1 and 2 spin counter-clockwise and motors 3 and 4 spin clockwise. Thus, ωr
is the sum of the angular velocities of all four rotors.

L = Iω + Irωre3 (5.3)

Here, Ir is the moment of inertia of the motor and propeller combination around its
spinning axis, which is aligned with the body z axis of the vehicle. ω is the angular
velocity of the body expressed in the body frame.

We proceed by equating the time derivative of the angular momentum with the sum of
all the external torques acting on the vehicle, τext.

dL

dt
= Iω̇ + Irω̇re3 + ω × (Iω + Irωre3) = τext (5.4)

Solving for the angular acceleration of the vehicle α = ω̇, we get

α = I−1 (τext − Irω̇re3 + ω × (Iω + Irωre3)) (5.5)

If we neglect the rotor inertia Ir, we see that (5.5) becomes the standard Euler equation
for a rotating rigid body.

α = I−1 (τext − ω × Iω) (5.6)

To see the effect of considering the rotor angular momentum, we compare predictions of
angular acceleration from (5.6) with those from (5.5). To compute ω̇r, the acceleration
of each rotor ω̇i is computed from the commanded rotor speed ωdes

i using a first order
delay model with ω̇i = −τmotor(ωi − ωdes

i).

Figure 5.1 shows the resulting predictions along the z-axis for a step yaw change of
45◦. We see that the true angular acceleration more closely matches the prediction that
considers rotor angular momentum using (5.5). The rotor inertia Ir was set to 5 ×
10−5 kgm2 by hand to closely match the true data.

Although we are able to identify a physics-based explanation for model error in the case
of fast yaw changes, we still would like to be able to identify and correct for model errors
without manually tweaked models.

5.2.2 Control with Disturbance Model

The feedback law shown in (2.69) assumes a disturbance estimate αdist that is constant.
This is appropriate for disturbance estimates that are the output of a filter, but the use
of a disturbance model requires a choice of a query point.

82

5.2 Modeling

24.5 24.6 24.7 24.8 24.9 25.0 25.1 25.2

Time (s)

−40

−30

−20

−10

0

10

Y
aw

A
ng

.A
cc

el
.(

ra
d/

s2
)

Predicted Yaw Acceleration

Actual
Rotor Inertia ON
Rotor Inertia OFF

Figure 5.1: Angular acceleration predictions with and without considering rotor angular
momentum during a step yaw change of 45◦. The prediction considering rotor inertia
matches the true angular acceleration more closely than the prediction without rotor
inertia.

There are two natural choices for the query point: the current state and the desired state.
Using the current state corresponds to feedback linearization, while using the desired state
corresponds to feedforward linearization [39].

For example, if the disturbance model is a function of vehicle angular velocity, the
feedback linearization law would be

αfb = −KReR(R,Rdes)−Kω(ω − ωdes) + αdes − αdist(ω) (5.7)

while the feedforward linearization law would be

αfb = −KReR(R,Rdes)−Kω(ω − ωdes) + αdes − αdist(ωdes). (5.8)

Although the feedback linearization law may feel more natural, feedforward linearization
does not suffer from state estimation or sensor noise, nor does it suffer from the robustness
issues of feedback linearization [38].

The disturbance model may further be a function of the control input α. With feed-
back linearization, a numerical optimization routine must be used to solve the below
equation.

αfb = −KReR(R,Rdes)−Kω(ω − ωdes) + αdes − αdist(ω, αfb). (5.9)

With feedforward linearization however, no such optimization is required as the desired
angular acceleration is independent of the applied angular acceleration.

αfb = −KReR(R,Rdes)−Kω(ω − ωdes) + αdes − αdist(ωdes, αdes). (5.10)

83

5.3 Experiments

−20

0

20

X
(r

ad
/s

2
)

Angular Acceleration

101 102 103 104 105 106 107 108 109

Time (s)

−20

0

20

Y
(r

ad
/s

2
)

Measured Linear Model Nominal Model

Figure 5.2: Angular acceleration while following aggressive circles. The nominal model
is inaccurate and the learned linear model corrects the error well.

5.2.3 Model Learning

To set up a regression problem, we solve for ferr.

ferr = α− fnom(ω, τ) (5.11)

Natural choices for the inputs to the regression are the angular velocity of the vehicle,
the orientation of the vehicle, and the RPMs of the motors. Feature selection is a hard
problem however, and we leave this as an open problem for now. Model performance on
datasets can be helpful in evaluating what features are best to use.

Results from an initial trial on flight data are shown in Figs. 5.2 and 5.3. Average absolute
angular acceleration error along X and Y is reduced by around 60% and 80% percent
on the training set. Features used in the linear regression are the angular velocity, the
motor RPMs, and a constant term.

5.3 Experiments

5.3.1 Baseline System Evaluation

We first establish performance characteristics of the baseline system through a series of
trajectory following experiments.

5.3.1.1 Disturbance Filter with Acceleration Disturbance Compensation

We compare the tracking performance of the angular acceleration disturbance (AAD)
estimation filter described in Section A.2.4 to the tracking performance of the system

84

5.3 Experiments

0

20

X
(r

ad
/s

2
)

Angular Acceleration Error

101 102 103 104 105 106 107 108 109

Time (s)

0

20

Y
(r

ad
/s

2
)

Measured Linear Model

Figure 5.3: Angular acceleration error during aggressive circles after fitting a linear
model. The model matches the measured angular acceleration disturbance well.

with only gyro bias estimation as described in Section A.2.3 (no angular acceleration
disturbance estimation). Figs. 5.4 and 5.5 show the control performance of a 660 g
quadrotor executing circular trajectories at two different speeds while carrying a 160 g
metal weight (simulating a payload).

During the circular trajectories, AAD compensation improves angular tracking perfor-
mance for the slower circles (Fig. 5.4), but has the opposite effect for the fast circles
(Fig. 5.5). This suggests that the disturbance estimate has difficulty in improving per-
formance when the disturbance is changing quickly. For both trials however, adding AAD
compensation increases the position error. This suggests there is modeling error in the
outer loop that cannot be accounted for by the AAD observer.

5.3.2 Flying in a Wind Field with Cardboard Plate

To test the proposed algorithms in a challenging environment, we task the vehicle to fly in
a turbulent wind field generated by 6 high-velocity fans while carrying a rigidly attached
cardboard plate for added drag disturbances. Figure 4.4 shows the robot hovering with
the cardboard plate in the wind field. In order to remain still, the vehicle must hover
at a non-trivial angle to fight the linear force imparted by the wind. The wind further
induces a large roll torque as the entire cardboard plate is below the center of mass of
the vehicle.

The forces and torques generated by the oncoming wind are heavily dependent on the
angle of the cardboard plate with respect to the velocity of the wind. Thus, as a measure
of how well our disturbance compensation algorithms are performing, we task the vehicle
to yaw in place with various speeds as it hovers in the wind field.

85

5.3 Experiments

−1

0

1

X
(m

)

Circles (3.7 s each)

Desired no comp. (error: 0.11 m) AAD comp. (error: 0.14 m)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

−1

0

1

Y
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.0

0.2

0.4

0.6

Z
A

xi
s

A
ng

le
(r

ad
)

Desired
no comp. (error: 0.09 rad)
AAD comp. (error: 0.05 rad)

Figure 5.4: Position (top) and angle of the body z-axis (bottom) during 3 1.5m radius
circles of 3.7 s each at a speed of 2.57m/s, while carrying a 160 g metal weight.

First, we compare the performance of the angular acceleration disturbance (AAD) es-
timation filter described in Section A.2.4 with the baseline system without angular
acceleration disturbance compensation. Both systems use L1 adaptive control with a
bandwidth of 1.0 along the x and y axes for linear acceleration disturbance compensation.
Video of the experiment for the baseline system can be seen at https://youtu.be/
T9GPuptJnlQ while that for the system with AAD compensation can be seen at https:
//youtu.be/xdR7y_xiW8I.

Figure 5.6 shows attitude control performance as the vehicle executes a 360◦ rotation in
yaw in increments of 45◦. Angular acceleration disturbance compensation increases both
yaw tracking and body z-axis tracking performance, as expected. The large transient
yaw error just before t = 20 s for AAD comp. is likely due to motor saturation.

Figures 5.7 and 5.8 show attitude and position control performance as the vehicle
executes 3 revolutions in yaw at a constant yaw rate of 120 ◦/s. Angular acceleration
disturbance compensation again increases both yaw tracking and body z-axis tracking
performance. However, it has no noticeable effect on position tracking. This is likely due

86

https://youtu.be/T9GPuptJnlQ
https://youtu.be/T9GPuptJnlQ
https://youtu.be/xdR7y_xiW8I
https://youtu.be/xdR7y_xiW8I

5.3 Experiments

−1

0

1

X
(m

)

Circles (2.7 s each)

Desired no comp. (error: 0.22 m) AAD comp. (error: 0.30 m)

0 2 4 6 8 10 12 14

Time (s)

−2

0

Y
(m

)

0 2 4 6 8 10 12 14

Time (s)

0.00

0.25

0.50

0.75

1.00

Z
A

xi
s

A
ng

le
(r

ad
)

Desired
no comp. (error: 0.10 rad)
AAD comp. (error: 0.13 rad)

Figure 5.5: Position (top) and angle of the body z-axis (bottom) during 3 1.5m radius
circles of 2.7 s each at a speed of 3.53m/s, while carrying a 160 g metal weight weighing.

to the rapidly changing linear acceleration that is not accounted for quickly enough by
the position loop disturbance observer.

5.3.2.1 Angular Acceleration Disturbance (AAD) Compensation with Ac-
celeration Model Learning

To see if AAD compensation will have more of a positive impact on position control
performance if the accelerations on the robot are more accurately modeled, we apply the
linear acceleration model learning approach from Chapter 3.

Yaw-in-place in Front of Fans The robot is asked to execute 4 revolutions in yaw at
a rate of 120 ◦/s while maintaining its position in front of the fans. We test the following
four control system configurations:

1. L1AC in the position loop with a bandwidth of 1.0 in the x and y axis and no

87

5.3 Experiments

0 5 10 15 20 25 30 35

Time (s)

0

2

4

6
Y

aw
(r

ad
)

Yaw in Wind (45◦ increments)

Desired
no AAD comp.
w/ AAD comp.

0.0 0.5 1.0 1.5 2.0 2.5

Time (s)

0.0

0.5

1.0

Z
A

xi
s

E
rr

or
(r

ad
) no AAD comp. (error: 0.17 rad)

w/ AAD comp. (error: 0.11 rad)

Figure 5.6: Yaw tracking performance (top) and body z-axis error (bottom) during 8
trials each of a trajectory spanning 45◦ in yaw in the wind field. Angular acceleration
disturbance compensation greatly improves attitude tracking performance.

AAD compensation (Filter / None)1

2. Online model learning in the position loop from [80], with full disturbance dynamics
inversion, and no AAD compensation (ML / None). The position loop model
learning uses position and the vehicle body y-axis as the input feature vector for
ISSGPR.

3. L1AC as above with AAD compensation (Filter / Filter)

4. Model learning as above with AAD compensation (ML / Filter)2

Each configuration executes the test trajectory at least five times.

Figure 5.9 shows the position control performance for all four configurations during the
experiment, broken down into position error and speed. Although differences in position
error are quite small, we see that model learning in the outer loop, combined with AAD
compensation in the inner loop, outperforms all others approaches in terms of speed
error, suggesting that the vehicle is able to stay still much better as it rotates in the
turbulent wind field. The fact that this gain in speed error does not translate into a gain

1Video of Filter / None for 120 deg/s is at https://www.youtube.com/watch?v=5e1HlEimJhI.
2Video of ML / Filter for 120 deg/s is at https://www.youtube.com/watch?v=hhJhfkse0w4.

88

https://www.youtube.com/watch?v=5e1HlEimJhI
https://www.youtube.com/watch?v=hhJhfkse0w4

5.3 Experiments

0 2 4 6 8

Time (s)

−0.50

−0.25

0.00
Y

aw
E

rr
or

(r
ad

)

Yaw in Wind (120 ◦/s)

no AAD comp. (error: 0.21 rad)
w/ AAD comp. (error: 0.10 rad)

0 2 4 6 8

Time (s)

0.00

0.25

0.50

0.75

Z
A

xi
s

E
rr

or
(r

ad
) no AAD comp. (error: 0.24 rad)

w/ AAD comp. (error: 0.19 rad)

Figure 5.7: Yaw tracking performance (top) and body z-axis error (bottom) during 3
revolutions at 120 ◦/s in the wind field. Angular acceleration disturbance compensation
greatly reduces the yaw deviations and improves body z-axis tracking performance.

0.00

0.25

X
(m

)

Yaw in Wind (120 ◦/s): Position

no AAD comp. (error: 0.09 m)
w/ AAD comp. (error: 0.10 m)

0 2 4 6 8

Time (s)

1.4

1.6

Y
(m

)

Figure 5.8: Position tracking performance during 3 revolutions at 120 ◦/s in the wind
field. Angular acceleration disturbance compensation has no noticeable effect on position
tracking.

89

5.3 Experiments

0.00

0.05

0.10

0.15

0.20

0.25

P
os

it
io

n
E

rr
or

(m
)

0.07 0.14 0.10 0.08

Yaw in Wind (4x 120 ◦/s): Position Control Performance

Filter / None ML / None Filter / Filter ML / Filter
0.0

0.1

0.2

0.3

0.4

0.5

Sp
ee

d
(m

/s
)

0.27 0.31 0.38 0.17

Figure 5.9: Position error (top) and speed (bottom) for the four tested combinations
while rotating 4 times around yaw in the wind field at 120 ◦/s. Points shown represent
one revolution with mean errors displayed in the bar (lower is better). Each configuration
is tested at least five times. Online model learning in the position loop, combined with
AAD compensation using the onboard filter, (ML / Filter, red), achieves lower speed
error and similar position error when compared to the Filter / None baseline.

in absolute position error suggests that there is a small, but persistent position error
offset during the duration of the trial. :his will be investigated in future work.

Figure 5.10 shows the yaw error and z-axis angle error for the four configurations, broken
down into yaw error and z-axis angle error. Both approaches using AAD compensation
achieve substantially lower yaw error than the approached without AAD compensation.
However, only ML / Filter, the configuration combining acceleration model learning
and AAD compensation, achieves the lowest z-axis angle error. Filter / Filter struggles
to improve the z-axis angle tracking error over Filter / None, likely because the desired
z-axis coming from the position control loop is changing rapidly due to the imprecise
position feedback. This can be seen in the speed graph, where Filter / Filter sustains
the highest speed error over all of the configurations.

The results here suggest that for highly dynamic trajectories, there is a synergistic com-
ponent to disturbance compensation between the outer loop, which estimates acceleration
disturbances, and the inner loop, which estimates angular acceleration disturbances.
Using either one alone fails to improve performance in a significant way. Improved
control performance under dynamic disturbances requires both adequate acceleration
compensation and adequate angular acceleration compensation running together.

90

5.3 Experiments

0.0

0.1

0.2

0.3

Y
aw

E
rr

or
(r

ad
)

0.19 0.21 0.08 0.08

Yaw in Wind (4x 120 ◦/s): Attitude Control Performance

Filter / None ML / None Filter / Filter ML / Filter
0.0

0.1

0.2

0.3

Z
A

xi
s

E
rr

or
(r

ad
)

0.18 0.21 0.17 0.10

Figure 5.10: Yaw error (top) and z-axis error (bottom) for the four tested combinations
while rotating 4 times around yaw in the wind field at 120 ◦/s. Points shown represent one
revolution with mean errors displayed in the bar (lower is better). Online model learning
in the position loop, combined with AAD compensation using the onboard filter, (ML
/ Filter, red) performs best in terms of z-axis angle error, while both approaches that
use AAD compensation perform best in terms of yaw error.

AAD Model at 180 ◦/s We further test the impact of position control loop model
learning when AAD compensation is enabled using a faster yaw trajectory of 180 ◦/s. We
also test a configuration that uses a learned AAD model that is fixed at runtime.

Below are the configurations tested.

1. L1AC in the position loop with a bandwidth of 5.0 in the x and y axis and AAD
compensation (Filter / Filter)3. The position loop acceleration disturbance filter
used for these trials differs from the one used in the trials above with a yaw
rate of 120 ◦/s, in the source used for the predicted acceleration. For these trials,
the predicted acceleration is computed as the commanded acceleration along the
body z-axis, multiplied by the actual vehicle z-axis. In the trials at 120 ◦/s, the
predicted acceleration is the desired acceleration vector that is output by the
position control loop. This change allows for a much higher bandwidth without
encountering instability, since the predicted acceleration, and thus estimated dis-
turbance, cannot change as rapidly as position error changes. Consequently, the
bandwidth is increased from 1.0 to 5.0 for this trial.

3Video of Filter / Filter for 180 ◦/s is at https://www.youtube.com/watch?v=FJkUeA0nxGs.

91

https://www.youtube.com/watch?v=FJkUeA0nxGs

5.3 Experiments

0.00

0.05

0.10

0.15

0.20

P
os

it
io

n
E

rr
or

(m
)

0.11 0.10 0.09

Yaw in Wind (5x 180 ◦/s): Position Control Performance

Filter / Filter ML / Filter ML / ML (fixed)
0.0

0.2

0.4

Sp
ee

d
(m

/s
)

0.45 0.26 0.28

Figure 5.11: Position error (top) and speed (bottom) for the three tested configurations
while rotating 5 times around yaw in the wind field at 180 ◦/s. Points shown represent
one revolution with mean errors displayed in the bar (lower is better). Each configuration
is tested three times. All tested configurations perform comparably with respect to
position error, while both configurations that use model learning outperform the filtering
configuration with respect to speed error.

2. Online model learning in the position loop from [80], as before, and AAD compen-
sation (ML / Filter).4

3. Position loop model learning as above, with a fixed model for the AAD, with
position and the vehicle y-axis as the input feature vector to ISSGPR. The model
is trained on separate flight data and is not updated at test time. (ML / ML)

Figure 5.11 shows the position control performance for the three configurations, again
broken down into position error and speed. All configurations perform comparably in
terms of position error, while the configurations using model learning outperform the
filtering configuration in terms of speed error. Results here are consistent with the results
for the trials at 120 ◦/s, with no noticeable improvement by using the AAD model.

Figure 5.12 shows the attitude control performance, broken down into yaw error and z-
axis angle error. In terms of attitude, the configuration using the AAD model outperforms
all by a slim margin. More experimental tests are needed to determine if this is a
significant difference.

4Video of ML / Filter for 180 ◦/s is at https://www.youtube.com/watch?v=rUE6sdRQJ-w.

92

https://www.youtube.com/watch?v=rUE6sdRQJ-w

5.3 Experiments

0.00

0.05

0.10

0.15

0.20

Y
aw

E
rr

or
(r

ad
)

0.13 0.11 0.08

Yaw in Wind (5x 180 ◦/s): Attitude Control Performance

Filter / Filter ML / Filter ML / ML (fixed)
0.0

0.1

0.2

0.3

Z
A

xi
s

E
rr

or
(r

ad
)

0.24 0.17 0.16

Figure 5.12: Yaw error (top) and z-axis error (bottom) for the three tested combinations
while rotating 5 times around yaw in the wind field at 180 ◦/s. Points shown represent
one revolution with mean errors displayed in the bar (lower is better). The configuration
which uses a learned AAD model (ML / ML) outperforms with respect to yaw error,
while both configurations that use model learning outperform the filtering configuration
with respect to z-axis angle error.

The experiment using a fixed, learned AAD model is preliminary and future work can
expand on it, by

• Learning the AAD model online.

• Using angular velocity and commanded RPMs in the feature vector.

5.3.3 Flying with a Cardboard Plate

We test the ability of the vehicle to track a trajectory while carrying the cardboard
plate and yawing at a rate of 180 ◦/s. For this experiment, the AAD model is a function
of velocity, thrust, and yaw. The attitude gains were lowered when running with AAD
compensation to avoid instability. Figure 5.13 shows the speed and z-axis error for various
strategies during a 3D Weave trajectory. Although the approach that uses the learned
AAD model combined with the learned acceleration error model performs the best out of
all the approaches with the same gains, the filtering-based AAD compensation achieves
lower error with the original, higher attitude gains (HG).

93

5.4 Conclusion

0.0

0.2

0.4

0.6

Sp
ee

d
E

rr
or

(m
/s

)

0.50 0.43 0.48 0.28 0.22

3D Weave w/ Cardboard and 180 ◦/s Yaw Rate: Control Performance

Filter / Filter ML / Filter Filter / ML ML / ML ML / Filter (HG)
0.0

0.2

0.4

Z
A

xi
s

E
rr

or
(r

ad
)

0.26 0.31 0.23 0.21 0.21

Figure 5.13: Speed (top) and z-axis error (bottom) for various strategies while executing
the 3D Weave trajectory, as in https://www.youtube.com/watch?v=E1-LK__Ssmo.

5.3.3.1 Feedforward Linearization for AAD Model

We compare using a disturbance model that is a function of vehicle angular velocity and
motor RPMs with both feedback linearization and feedforward linearization. As in the
previous experiment, attitude gains had to be lowered (LG) when using this model with
actual sensor data due to instability. When using feedforward linearization however, the
original attitude gains (HG) could be used. This highlights the robustness advantage of
feedforward linearization over feedback linearization.

Position and attitude performance during the 3D Weave while spinning around yaw are
shown in Figs. 5.14 and 5.15. The learning-based AAD compensation approach with
feedforward linearization performs similarly to the filtering approach in position and
speed error and achieves slightly lower z-axis error. This is a positive result for model
learning as it shows the model learning method is competitive despite not using data
from the current vehicle operation. The filtering method has the benefit of fresh data.
Model learning can outperform, despite using “stale data”, when there is a repeatable
and thus predictable angular acceleration disturbance.

5.4 Conclusion

The experiments presented highlight the benefits of modeling disturbances on the atti-
tude dynamics of the quadrotor. We have shown that while model learning approaches

94

https://www.youtube.com/watch?v=E1-LK__Ssmo

5.4 Conclusion

0.0

0.1

0.2

0.3

P
os

it
io

n
E

rr
or

(m
)

0.26 0.20 0.22 0.19

3D Weave w/ Cardboard and 180 ◦/s Yaw Rate: Position Control Performance

Filter/None (HG) ML/Filter (HG) ML/ML (FB) (LG) ML/ML (FF) (HG)
0.0

0.2

0.4

0.6

Sp
ee

d
(m

/s
)

0.48 0.22 0.28 0.21

Figure 5.14: Position error (top) and speed error (bottom) while executing the 3D Weave
trajectory for feedback linearization and feedforward linearization on the inner loop.

Filter/None (HG) ML/Filter (HG) ML/ML (FB) (LG) ML/ML (FF) (HG)
0.0

0.1

0.2

0.3

Z
A

xi
s

E
rr

or
(r

ad
)

0.20 0.21 0.21 0.17

3D Weave w/ Cardboard and 180 ◦/s Yaw Rate: Z Axis Error

Figure 5.15: z-axis error while executing the 3D Weave trajectory for feedback
linearization and feedforward linearization on the inner loop.

95

5.4 Conclusion

on the attitude dynamics can improve performance, the margin of improvement over
filtering-based approaches is smaller than when learning position dynamics as in the
previous two chapters. The much faster attitude dynamics are likely a large reason for
this. We have also shown that feedforward linearization provides a way to use learned
angular acceleration disturbance models without sacrificing robustness and is a promising
direction for future study.

96

6chapter

Model Learning for High Speed
Outdoor Flight

In the prior chapters, we used dynamical model learning to improve control performance
of a quadrotor flying with reliable state estimation. In practice, quadrotors flying in
realistic scenarios rely mostly on GPS and vision-based state estimation. GPS data can
be unreliable and is often unavailable indoors or in obstructed environments. Vision-
based data is more readily available but can suffer from robustness issues and can fail
due to motion blur, a lack of visual richness in the scene, or extreme lighting conditions.
As a result, a state estimate derived from vision data is often noisier and less accurate
than that from a motion capture arena.

In this chapter, we show how to apply the model learning strategies presented earlier to
scenarios with less than ideal state estimation and validate them by flying a quadrotor
outdoors at high speed.

This work advances the thesis statement in two ways:

1. shows significance of model learning’s impact on control performance in a challeng-
ing and realistic outdoor scenario, and

2. enhances and validates the applicability of the methods presented under a degraded
state estimate.

6.1 Quadrotor

The vehicle used in the outdoor experiments, shown in Fig. 6.1 is a quadrotor weighing
1.1 kg and a thrust to weight ratio of over 4. The parts used on the vehicle are provided
in Table 6.1.

The firmware running on the Pixracer is as described in Appendix A, with the attitude
feedback controller running at 1000Hz and commands sent to the ESC using the DShot
protocol. The onboard NVIDIA Tegra TX2 computer, on which all control and model
learning algorithms are executed, runs ROS Melodic on a minimized Ubuntu 18.04.

97

6.1 Quadrotor

Table 6.1: Outdoor quadrotor parts list

Part Model
Frame Armattan Chameleon Ti LR 7 inch
Motor 4x T-Motor F60 Pro II 1750kv

ESC Lumenier BLHeli32 50A 4-in-1
Propeller 4x DALProp Cyclone T7056C
Battery Lumenier 4s N2O 1500mAh 120c

Flight Controller Pixracer
GPS ublox MAX-8

Vision-based S.E. Intel RealSense T265
Computer NVIDIA Tegra TX2

Carrier Board Auvidea J121

NVIDIA Tegra TX2

Pixracer

GPS Module

4s 1500 mAh Battery

Intel RealSense T265

Figure 6.1: The 1.1 kg quadrotor used in the outdoor field experiments has a thrust to
weight ratio of over 4 and a maximum flight time of near 6 minutes. Onboard are the
Tegra TX2 computer for position control and model learning, the Intel RealSense T265
for vision-based state estimation, and a GPS unit.

98

6.2 State Estimation

−1

0

1

X
(m

)

Position: Vicon vs. T265

−1

0

1

Y
(m

)

0 20 40 60 80

Time (s)

0

1

Z
(m

)

Vicon
T265

Figure 6.2: T265 vision-based position estimates (orange) compared to Vicon position
estimates (blue) while following three aggressive circle trajectories indoors with an added
wind disturbance. The trajectories demand speeds of up to 3.5m/s and accelerations of
9.8m/s2. Although experiencing drift, the T265 estimates the position well enough for
control purposes.

6.2 State Estimation

To provide vision-based state estimates, an Intel RealSense T265 tracking camera is
installed on the vehicle, along with a GPS unit. While the T265 provides high rate
state feedback, its performance suffers during high speed and high acceleration trajecto-
ries.

Fig. 6.2 shows the estimated vehicle positions of both the T265 and Vicon as the vehicle
executes an aggressive circle trajectory three times with an added wind disturbance in
the arena. The trajectories reach speeds of up to 3.5m/s and accelerations of 9.8m/s2.
Despite the large accelerations demanded, the T265 performs well enough for its use in
the control loop.

Fig. 6.3 shows the T265 performance vs. GPS during a high speed outdoor trajectory that
reaches speeds of 12m/s and accelerations of 8m/s2. In this flight, the T265 estimate
drifts to a degree that renders it infeasible for control. Fig. 6.4 shows the resulting flight
path of the vehicle. The poor performance of the T265 is likely a result of both motion
blur in the camera leading to a lack of features, as well as the larger vibrations from
the higher RPMs during fast outdoor flight. A big drawback to black-box modules such
as the T265 is that diagnosing failure is very difficult. A certain way to improve these
vision-based estimates would be to use a notch filtered IMU, as in Appendix A.2.2, in

99

6.2 State Estimation

0

10

X
(m

/s
)

Velocity: GPS vs. T265

−5

0

Y
(m

/s
)

20 22 24 26 28 30 32 34

Time (s)

−10

0

10

Z
(m

/s
) GPS

T265

Figure 6.3: T265 vision-based velocity estimates (orange) compared to GPS velocity
estimates (blue) during a fast outdoor flight, reaching a speed of 12m/s and an
acceleration of 8m/s2. The T265 experiences catastrophic drift starting at around the
27 s mark with the z-velocity estimate, leading to an eventual crash. The GPS accuracy
bounds are shown in shaded blue.

Desired Trajectory

Figure 6.4: The vision-based estimates from the T265 experience extreme drift in the
z-axis, which leads to a deviation from the desired trajectory and eventual crash.

100

6.2 State Estimation

0 20 40 60 80 100 120 140

Time (s)

0

2

4

6

8

10

Z
(m

)

Barometer vs. GPS

Barometer
GPS
Speed

0

4

8

12

Sp
ee

d
(m

/s
)

Figure 6.5: Barometer estimate of z position (blue) vs that of GPS (orange) during three
fast outdoor figure 8s. The barometer estimate is coupled with the speed of the vehicle
(green) due to an increase in air pressure.

the optimization. This would alleviate many of the issues arising from vibrations and
subsequent noise in the IMU readings, which leak into the state estimate and potentially
cause optimization failure. Unfortunately, the T265 uses an internal IMU that cannot
be replaced.

These results show that while the vision-based estimates from the T265 may work during
aggressive trajectories in some situations, such as indoors, the T265’s use as the primary
state estimation source for control during fast trajectories outdoors is too risky and leads
to crashes.

GPS too has its shortcomings. Most GPS solutions are more precise in the horizontal
component than in the vertical. This can lead to poor altitude control, causing crashes
into the ground or an escape from communication range. Air pressure can be used as
a secondary estimate of altitude, but not without introducing additional complexity.
Figure 6.5 shows an estimate of z position derived from the vehicle’s onboard barometer,
compared to that of GPS. In addition to the poor precision of the barometer, its estimate
of z position is corrupted during periods of high vehicle speed. It may be possible to learn
a sensor model of the barometer to remove the bias introduced as a function of the speed.
While this is an interesting direction for future work, we deemed it too complex for the
purposes of our experiments.

Ultimately however, the trajectories executed during these experiments have a desired
height well above the typical error bound of the GPS altitude, and thus crashing into

101

6.2 State Estimation

Table 6.2: Control gains used in the outdoor experiments

Gain T265 (vision) GPS
Position X, Y 1.47 0.4
Velocity X, Y 2.16 1.8

Position Z 3.0 2.2
Velocity Z 3.0 2.5

Attitude X, Y 160 160
Angular Velocity X, Y 14 14

Yaw 20 20
Angular Velocity Z 5 5

the ground is not likely. Issues due to communication range were only seen when the
vehicle is out of line of sight and not when the vehicle flies a few meters above its desired
altitude.

One trick to improve the vehicle’s vertical control performance is to use integrated GPS
velocity as the z-axis position state feedback instead of the GPS altitude reported by the
receiver. The altitude reported from the GPS receiver attempts to be absolutely correct,
while the velocity reported is an additional measurement unaffected by jumps in the
altitude estimate. In this way, absolute accuracy can be sacrificed for more precision.
Although this can be done for all three axis, we choose to use integrated GPS velocity
only for the z position in these experiments, as position estimate jumps were most severe
in the vertical direction.

A second drawback of using GPS is the low data rate. The GPS receiver onboard the
vehicle returns a GPS solution at 5Hz. This poses a number of challenges for both control
and model learning.

1. Control gains must be lowered. Flying the vehicle with the control gains used for
T265 flight is not possible due to instability. Table 6.2 shows the control gains used
for both state estimation configurations.

2. The position controller must combine high rate trajectory information with low
rate state feedback. It is important to compute error feedback with respect to the
trajectory only at times at which state information is available. Computing the
error at times that lie in between state updates requires state prediction due to
the changing desired state. For the experiments in this chapter, we only compute
error at the times the state is available and keep it constant while the remaining
higher order trajectory desires are sampled at the attitude control command rate
(100Hz).

3. Model learning must learn accurate models with 1/20’th the available data. Model
learning’s strength lies in averaging out the noise after assigning noisy points to
the state space. With less data, the learned model variance will be higher and thus
potentially inaccurate.

102

6.3 Safety

Figure 6.6: The outdoor field testing location used to validate model learning at high
speed.

When GPS is used for position and velocity feedback, yaw feedback is still provided by
the T265.

6.3 Safety

In order to ensure safety while flying at high speeds, a means of commanding the vehicle
via radio control (RC) is developed. First, the vehicle’s motors can immediately killed
via the flip of a switch on the RC transmitter. Second, the RC allows an operator to
switch control of the vehicle from the onboard computer, which is following trajectories
autonomously, to the RC using the two control sticks. The RC control mode uses the
same onboard attitude controller, but the attitude commands are computed from the
incoming RC data. Since a yaw estimate is not available on the firmware, absolute yaw
control is turned off in RC mode and the only the angular velocity around the body
z-axis is controlled.

6.4 Experiments

Prior flights for validating model learning strategies have taken place in simulation and
inside a 5m by 4m by 3m caged Vicon arena. While simulation is useful for validating
theory and large scale data analysis, drawing conclusions about the practical usefulness
of an approach from simulation is difficult. Due to the limited size of the caged arena,
the speed and acceleration attainable by the vehicle inside is limited.

103

6.5 Trajectories

Table 6.3: ISSGPR parameters used for the four outdoor trajectories

Traj. Vel. (m/s) N σn σf Length Scales (m/s)
1 8 50 4.1 1.1 1.0
2 12 50 0.5 1.0 2.5
3 14 50 0.5 1.0 2.5
4 17 50 0.5 1.0 2.5

To validate the proposed approaches in more realistic scenarios, flights are conducted
outdoors in a large open field, shown in Fig. 6.61. While the environment is free of
obstacles, frequent wind gusts and changing lighting conditions pose additional challenges
for control and vision-based state estimation.

The regression technique used for model learning in these experiments is, unless otherwise
indicated, ISSGPR with velocity as input and 50 random features. The regression is per-
formed online incrementally, using updates to the Cholesky decomposition, and an initial
Tikhonov regularization factor of σ2

n. When linear regression is used, it is performed
incrementally in the same manner with the same initial regularization factor. Table 6.3
shows the hyperparameters used by ISSGPR for the four trajectories tested:

• N , the number of random features

• σn, the square root of the Tikhonov regularization factor, used to initialize the
Cholesky decomposition of the data matrix inverse

• σf , the signal standard deviation of the Gaussian process kernel function, scales
the output of the random Fourier features

• Length scales, bandwidth of the input features, inversely scales input (velocity in
our experiments)

In Section 6.7, an offline model, denoted SSGPR, is learned using the same parameters
as that used by ISSGPR on the vehicle. All experiments shown in this chapter consider
first and second-order disturbance dynamics to correct the desired angular velocity and
desired angular acceleration, as described in Chapter 3.

6.5 Trajectories

While previous flights in the Vicon arena have used aggressive trajectories derived using
simple polynomials of short duration, outdoor flights require longer trajectories with
higher velocities to take full advantage of the available space and to experience larger
disturbance forces due to drag. To generate these trajectories, we use the method from
[77] as implemented by the open source package at https://github.com/ethz-asl/
mav_trajectory_generation.

We generate elongated figure 8 trajectories reaching speeds of 8m/s, 12m/s, 14m/s,
1Special thanks to Bob Bittner and Jake Lammott from NREC for the Gascola field testing site.

104

https://github.com/ethz-asl/mav_trajectory_generation
https://github.com/ethz-asl/mav_trajectory_generation

6.6 Results

Table 6.4: Parameters used to generate the outdoor trajectories

Traj. Time Penalty kT Vel. Constr. (m/s) Acc. Constr. (m/s2)
1 1200 10 6
2 200 15 6
3 600 16 9
4 2200 20 12

Table 6.5: Outdoor trajectories, their higher order derivatives, and the relative speed
error improvement of our model learning method when compared to the adaptive baseline
controller.

Traj. Span (m) Vel. (m/s) Acc. (m/s2) State Est. % Err ↓
1 20 8.4 6.1 Vision, GPS 60.7
2 40 11.8 6.1 GPS Only 41.0
3 40 14.3 9.1 GPS Only 34.3∗

4 40 17.0 12.4 GPS Only 4.1
∗Excluding transient first trial.

and 17m/s. A visualization of the 20m 8m/s figure 8 is shown in Fig. 6.7, while the
three 40m figure 8 trajectories are shown in Fig. 6.8.

While the fast trajectories were attempted using both T265 and GPS control, only GPS
provided reliable enough state estimates to perform the experiments. As a result, for all
but the slowest 8m/s outdoor trajectory, we report results using GPS control only.

The varied parameters used to generate these trajectories are provided in Table 6.4
while those common to all, as well as more details about the method used, are given in
Appendix C.

6.6 Results

A high speed outdoor figure 8 trajectory reaching speeds of up to 8m/s is executed first
with a baseline adaptive control method and then using the proposed acceleration model
learning strategy. A visual overlay of this trajectory is shown in Fig. 6.7. The speed, posi-
tion error and speed error for this experiment are shown in Figs. 6.9, 6.10, and 6.11. While
the baseline method roughly attains the desired speed, with a mean absolute error of
0.33m/s, adding model learning improves the error by 61%, bringing it to 0.13m/s.

Figs. 6.12, 6.13, and 6.14 show the speed for both the baseline method and model
learning for the three faster figure 8s. In all cases, model learning improves speed
tracking performance. However, the performance improvement is minimal for the 17m/s
trajectory, likely due to poor model fit.

A summary of the percent speed error improvement for all four trajectories is provided
in Table 6.5 and an error comparison to the baseline is shown in Fig. 6.15. Two ob-

105

6.7 Learned Model Analysis

Figure 6.7: Overlay of the 8m/s 20 meter figure 8 trajectory at Gascola, executed using
GPS control.

Figure 6.8: Overlay of three high-speed 40m figure 8 trajectories at Gascola, executed
using GPS control. The bottom-most trajectory was executed first, with the middle
second, and the topmost third. Note the large vertical drift and comparatively lower
lateral drift.

servations are worth highlighting. First, the error incurred by both methods increases
with increasing trajectory speed. This is unsurprising, as higher speeds come with higher
drag disturbances on the vehicle. Second, the variance in the error of the model learning
method is higher than that of the baseline adaptive method. Model learning reduced the
bias in the error, but increased the variance. This is likely a result of the incremental
model learning performed and can be eliminated, at least to some degree, by holding the
model fixed during execution of the trajectory.

6.7 Learned Model Analysis

Figure 6.16 shows the learned model output for each of the six iterations of the 20m
figure 8 overlaid onto the time axis. Since the model is learned online, the first iteration
(red) shows some oscillations. The remaining five however, track the mean of the raw
disturbance data (blue) well. This improved prediction error corresponds well to the
improved position and speed tracking performance shown in Figs. 6.10 and 6.11.

106

6.7 Learned Model Analysis

0 2 4 6 8 10 12

Time (s)

0

2

4

6

8

Sp
ee

d
(m

/s
)

8 m/s Figure 8: Speed

Desired
L1 Adaptive, err: 0.33 ± 0.02 (3)
Model Learning, err: 0.13 ± 0.02 (6)

Figure 6.9: Speed for both the baseline and the proposed model learning method during
the 8m/s outdoor figure 8 trajectory.

0 2 4 6 8 10 12

Time (s)

0.0

0.5

1.0

1.5

P
os

it
io

n
E

rr
or

(m
)

8 m/s Figure 8: Position Error

L1 Adaptive, err: 0.58 ± 0.02 (3)
Model Learning, err: 0.32 ± 0.09 (6)

Figure 6.10: Position error for both the baseline and the proposed model learning method
during the 8m/s outdoor figure 8 trajectory.

107

6.7 Learned Model Analysis

0 2 4 6 8 10 12

Time (s)

−1.0

−0.5

0.0

0.5

1.0
Sp

ee
d

E
rr

or
(m

/s
)

8 m/s Figure 8: Speed Error

L1 Adaptive, err: 0.33 ± 0.02 (3)
Model Learning, err: 0.13 ± 0.02 (6)

Figure 6.11: Speed error for both the baseline and the proposed model learning method
during the 8m/s figure 8 trajectory.

0 2 4 6 8 10 12 14 16

Time (s)

0

2

4

6

8

10

12

Sp
ee

d
(m

/s
)

12 m/s Figure 8: Speed

Desired
L1 Adaptive, err: 0.48 ± 0.03 (3)
Model Learning, err: 0.28 ± 0.05 (4)

Figure 6.12: Speed for both the baseline and the proposed model learning method during
the 12m/s figure 8 trajectory.

108

6.7 Learned Model Analysis

0 2 4 6 8 10 12 14

Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

d
(m

/s
)

14 m/s Figure 8: Speed

Desired
L1 Adaptive, err: 0.57 ± 0.04 (4)
Model Learning, err: 0.49 ± 0.22 (5)

Figure 6.13: Speed for both the baseline and the proposed model learning method during
the 14m/s figure 8 trajectory. The first iteration has poor performance since the model
has not seen this trajectory before. The average speed error for the remaining four
trajectories is 0.38m/s ± 0.05 (4).

0 2 4 6 8 10 12

Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

d
(m

/s
)

17 m/s Figure 8: Speed

Desired
L1 Adaptive, err: 0.76 ± 0.05 (3)
Model Learning, err: 0.72 ± 0.00 (1)

Figure 6.14: Speed for both the baseline and the proposed model learning method during
the 17m/s figure 8 trajectory.

109

6.7 Learned Model Analysis

8 12 14 17

Max Trajectory Speed (m/s)

0.2

0.4

0.6

0.8
Sp

ee
d

E
rr

or
(m

/s
)

Speed Error vs. Trajectory Speed

Baseline
Model Learning

Figure 6.15: Speed error summary for the baseline (blue) and model learning (orange)
on all four high-speed figure 8 trajectories. Individual trials are small dots, while the
mean and standard deviation over all trials are the large dots and shaded regions. Model
learning reduces the error for the 8m/s, 12m/s, and 14m/s trajectories.

0 2 4 6 8 10 12

Time (s)

−4

−2

0

2

4

A
cc

.D
is

t.
(m

/s
2
)

Acceleration Disturbance: 6 Iterations of 8 m/s Figure 8

Measured
Prediction (Iter. 1)
Prediction (ISSGPR)

Figure 6.16: The learned model prediction (orange) and the raw disturbance data (blue)
during the six executions of the 20m figure 8.

110

6.8 Conclusion

0 2 4 6 8 10 12 14 16

Time (s)

−10

−5

0

5

A
cc

.D
is

t.
(m

/s
2
)

Acceleration Disturbance: 12 m/s Figure 8 (GPS)

Measured
Prediction (Linear)
Prediction (ISSGPR)

Figure 6.17: The learned model prediction from ISSGPR (orange), a linear model (green),
and the raw disturbance data (blue) during the 12m/s 40m figure 8 trials.

Figures 6.17, 6.18, and 6.19 show the learned models for the three 40m figure 8s that use
GPS control. While the two slowest figure 8s show good model agreement with the raw
data, the sparsity of the data leads to a poor model fit for the fastest trajectory. This
is likely the reason for the poor control performance improvement from model learning
seen in Fig. 6.14. Also note the relative sparsity of the data relative to Fig. 6.16. While
the T265 provides data at 200Hz, the GPS module only provides data at 5Hz, making
model learning more difficult. Despite this, the incremental regression is able to capture
the mean of the disturbance well, without destabilizing oscillations, for the 12m/s and
14m/s trajectories. The results at 17m/s highlight the difficulty in learning dynamical
models with data sparsity and with only a single trajectory execution.

Figure 6.20 shows the acceleration disturbances felt by the vehicle as a function of
maximum trajectory speed, along with the residual disturbance after learning offline
linear and SSGPR models. First, we notice that the acceleration disturbance without a
learned model increases with increasing trajectory speed. As mentioned above, this is
due to the stronger air resistance acting on the vehicle. Second, we see that the proposed
SSGPR model learning technique is able to significantly reduce the disturbance on the
vehicle at all four tested speeds. Finally, we note that the linear model is competitive
for the three slower speeds, but does not perform as well for the fastest speed, 17m/s.
This indicates that the nonlinearity of the disturbance due to the drag force increases
with trajectory speed, and is significant at speeds at or greater than 17m/s, which is
consistent with the conventional model of drag ∼ the square of the velocity.

6.8 Conclusion

The presented outdoor flight experiments show how model learning can improve control
performance for aggressive trajectories outdoors with imperfect state estimation. A
number of issues and questions remain however:

111

6.8 Conclusion

0 2 4 6 8 10 12 14

Time (s)

−10

−5

0

5

A
cc

.D
is

t.
(m

/s
2
)

Acceleration Disturbance: 14 m/s Figure 8 (GPS)

Measured
Prediction (Linear)
Prediction (ISSGPR)

Figure 6.18: The learned model prediction from ISSGPR (orange), a linear model
(green), and the raw disturbance data (blue) during the 14m/s 40m figure 8 trials.
The oscillatory prediction corresponds to the large error trial from Fig. 6.13.

• The learned model output can be sensitive to the regression hyperparameters.
Figure 6.18 shows that the linear model output is smoother than that of ISSGPR.
Hyperparameter optimization of the ISSGPR length scales can perhaps alleviate
this issue somewhat.

• The model learning performed for these experiments was done incrementally with
each incoming data point and single-step differentiation of the vehicle state to
obtain the measured acceleration. There are intermediate possibilities between this
single-step model learning and offline model learning that may provide a better
bias/variance trade-off, particularly when the state estimate is noisy or low rate,
as is the case when using GPS data. For example, vehicle states can be non-causally
smoothed using advanced filtering algorithms to reduce the noise of the regression
algorithm input. This cannot be done for adaptive methods or feedback control,
where there is no “memory” or model used.

• How important are the disturbance dynamics? Chapters 3 and 4 showed that con-
sidering disturbance dynamics improves control performance when using a learned
disturbance model. While this also likely holds outdoors, it has not been verified
experimentally using an ablation study for the configurations tested in this chapter.
A reasonable hypothesis is that disturbance dynamics are most relevant when
rapidly accelerating or decelerating, so that the drag force disturbance acting on the
vehicle is rapidly changing. Further, their relevance may be determined through
inspection of the magnitude of the learned model’s first and second derivatives,
and how that propagates to changes in the vehicle’s attitude references and control
inputs.

• How can an accurate dynamics model alleviate the burden of state estimation?
A primary reason to learn a more accurate model is to follow trajectories with

112

6.8 Conclusion

0 2 4 6 8 10 12

Time (s)

−10

−5

0

5

A
cc

.D
is

t.
(m

/s
2
)

Acceleration Disturbance: 17 m/s Figure 8 (GPS)

Measured
Prediction (Linear)

Figure 6.19: The learned model prediction from a linear model (green) and the raw
disturbance data (blue) during the 17m/s 40m figure 8.

8 12 14 17

Max Trajectory Speed (m/s)

0.5

1.0

1.5

2.0

2.5

A
vg

.A
cc

el
er

at
io

n
D

is
tu

rb
an

ce
(m

/s
2
)

Avg. Accel. Disturbance vs. Trajectory Speed

No Model
Linear
SSGPR

Figure 6.20: The average acceleration disturbances experienced along the outdoor
trajectories (blue), the remaining disturbance after applying a linear model (green), and
the remaining disturbance after applying Sparse Spectrum Gaussian Process Regression
(orange). Standard deviation over trajectory executions is denoted by the shaded regions.
The importance of nonlinear model learning increases as trajectory speed increases.

113

6.8 Conclusion

less error. A secondary reason may be to reduce the reliance on precise state
estimation by the lowering of control gains. As the presented experiments show,
both accurate and precise state estimation outdoors at high speed remains difficult.
Model learning allows a technique to aggregate large amounts of data to learn
accurate models, and subsequently lower control gains to achieve similar trajectory
tracking performance but with less susceptibility to state estimate noise and jumps.
Through careful theoretical analysis, quantitative relationships should be derived
between dynamical model accuracy, trajectory tracking error, state estimate noise,
and control and filter gains. We believe this “model learning-as-feedback” strategy
to be a promising area for future study.

114

7chapter

Conclusion

Quadrotors are agile vehicles whose potential as of yet remains somewhat untapped. In
this thesis, we have strived to enable more accurate aggressive flight in nonideal condi-
tions arising from external disturbances, poorly modeled dynamics, and state estimation
difficulties. While our model learning strategies have improved control performance in
most of the scenarios tested, the problem of flying a vehicle with unknown dynamics
in unpredictable conditions remains largely unsolved. Here, we outline a summary of
the contributions made in this thesis and conclude with promising directions for future
work.

7.1 Summary of Contributions

In Chapter 3, we highlight the importance of disturbance dynamics and introduce a
method capable of inverting learned models that capture disturbance dynamics of large
magnitude. We also augment the method with the ability to invert models that depend
on the vehicle control inputs using efficient online nonlinear root finding. We show
the performance improvements arising from using the method in both simulation and
hardware experiments.

In Chapter 4, we take steps to render the feedback linearization controller for quadrotors
feasible for aggressive flight in uncertain conditions. First, we augment the feedback
linearization controller with an analogous acceleration disturbance model learning strat-
egy to that from Chapter 3 and show how to propagate the disturbance dynamics to
the attitude controller. We show that this controller is efficient, provides a better error
response than traditional quadrotor attitude controllers, and validate it on a hardware
quadrotor in a motion capture arena. We then provide a way to reduce the detrimental
impact of motor delay while also reducing the order of the dynamic feedback from
two to one. We show that this delay model improves step responses for the feedback
linearization controller on the hardware platform. While we have not yet demonstrated
improved trajectory tracking performance relative to a traditional cascaded approach on
a hardware platform, we believe the feedback linearization approach is viable and should
be explored further.

Chapter 5 details the development of model learning for quadrotor attitude controllers.
We show the synergistic relationship between linear acceleration disturbance compensa-
tion and angular acceleration disturbance compensation through challenging experiments

115

7.2 Limitations and Future Work

on a hardware platform.

Finally, in Chapter 6, we validate our approach in challenging outdoor conditions. We
show that our model learning method works with a degraded and low rate state estimate
and in an environment with unpredictable disturbances coming from wind gusts.

7.2 Limitations and Future Work

Many areas neighboring to this topic are left unexplored by this thesis and the limitations
that result can transition nicely into future work.

7.2.1 Learning Models

The incremental model learning presented does not consider data forgetting. Every
additional data point affects the learned model’s parameters less than the previous,
eventually leading to a model that is sluggish to adapt. While this is adequate for a few
short flights, longer autonomous operation requires a strategy for handling this. A simple
sliding window approach, combined with rank-one downdates of the inverse data matrix,
can be used with incremental linear regression to forget old data. More complicated
data management strategies can be used to ensure that the model remains well-defined
and non-singular in all relevant directions, not unlike the strategies used for keyframe
retention and node marginalization in visual-inertial state estimators.

The regression strategy used is designed to deal with noise in the output points, e.g.
the measured acceleration. However, since the model input is the vehicle state, the
regression strategy should also consider probabilistic input points by design [58]. In
linear acceleration learning for quadrotors, the model output is acceleration, which is
computed by differentiating the vehicle velocity. This presents a further difficulty, as
the noise in the output (acceleration) is dependent on the noise in the input (velocity).
Extending the probabilistic regression framework to handle this noise coupling between
the data input and the data output may improve the model accuracy.

While this thesis explores learning corrections to both linear and angular dynamics,
there are a number of components where structured calibration remains essential for
quadrotors and robotics systems in general. For example, the quadratic relationship
between motor speed and force produced is characterized using a specialized rig offline. In
theory, this relationship can be subsumed by both the linear and angular non-parametric
components, but it may be easier from a learning perspective to inject some domain
knowledge or structure into the regression. Gradient descent can be used online during
vehicle operation to update the quadratic coefficients.

Minimizing trajectory prediction error is a natural and simple to implement cost function
for learning models. However, altering or changing the cost function may result in
more accurate models, models that are better for control performance, or both. First,
optimizing for model multi-step prediction accuracy has been shown to improve both
multi-step predictions and control performance, and can be done efficiently [89]. Second,

116

7.2 Limitations and Future Work

optimizing tracking error directly with respect to the model parameters can provide
better convergence than optimizing prediction error [76]. We believe that exploring the
relative strengths and weaknesses of prediction error and tracking error as a signal for
model optimization can provide insights. For example, an optimization that minimizes
a weighted sum of both may be a more flexible cost function.

7.2.2 Using Learned Models

First, the theoretical analysis can be greatly expanded. The connection between model
accuracy (or uncertainty) and resulting trajectory tracking performance has not been
made fully explicit. Such a result would allow an autonomous vehicle to make much
more informed decisions about both trajectory planning and model learning. Active
learning [95] could then be used to reach the level of model accuracy required to complete
a particular objective. Dynamical models that are aware of their uncertainties can inform
planners that may want to prioritize safety, and thus avoid trajectories that take the
vehicle into a region of the state space where the dynamics are not well known.

The results in this thesis have compared adaptive control and disturbance estimation
methods with model learning methods, but there is no real obstacle to combining the two.
In such a system, the adaptive component should handle the unpredictable and time-
varying disturbances, such as wind gusts, while the modeling component can handle
the predictable disturbances arising from modeling error and other regularities in the
environment [41]. In that case, it is important that the dynamical model used in the
adaptive disturbance estimator is the same learned model used in the controller. The
interplay between a model that is learned incrementally and an adaptive component
should be theoretically analyzed for stability and performance. Both incremental model
learning and adaptive disturbance estimation methods have parameters that control
the speed of their adaptation, and these should be set from a principled probabilistic
framework.

Improved dynamical models are useful for more than just control performance. The state
estimator process model can be augmented using the learned acceleration corrections to
improve the state estimate [69], particularly in situations where state measurements are
degraded or unavailable.

7.2.3 Future

In general, the goal of a robotic system that can handle arbitrary degradation gracefully
online remains elusive. As a guiding question, one may ask: what is the best way for
a mobile robot to learn how to optimally control itself in an uncertain and dynamic
environment? The role of large scale simulation can be used to meta-learn an agent that
can learn in a variety of environments. Such an agent can self-supervise through the
goal of minimizing prediction error of its sensor observations, as well as minimizing
tracking error for various trajectories. This simulation technique has the advantage
of not requiring time-consuming and potentially dangerous hardware experiments and
similar techniques have recently been employed with success [46]. With enough variety

117

7.2 Limitations and Future Work

in the simulated training data, such learned agents can potentially handle degradation
where current more structured approaches cannot. Furthermore, such techniques have
the ability to circumvent the need for an accurate state estimator, as the agent can learn
to act directly on sensor observations.

Minimizing prediction error as self-supervision with large-scale learning has recently seen
tremendous success in the field of natural language processing [14], but has seen slower
adoption in robotics. The adaptive robotic systems of the future will leverage the ever
increasing power of offline computation to perform at the limits of their capabilities in
a larger variety of environments.

118

Aappendix

Firmware and Attitude Estimation

A.1 System

Figure A.1 shows the architecture of the embedded firmware implementation. The system
is organized into three threads: (1) the main control thread that samples the IMU, reads
from serial, runs the attitude estimator, and runs the controller, (2) the CAN thread
that sends commands to the ESCs, and (3) the logger thread that writes diagnostics at
a high-rate to the onboard SD card.

A.2 Sensing

The primary sensor available on the firmware is the IMU, which provides accelerometer
and gyroscope data along three axes.

Figure A.2 shows an example timeseries of unfiltered accelerometer data from a vehicle
at hover. It is clear that the noise dominates over the small changes in the gravity vector
during hover, as the peak to peak amplitude is over 2 Gs of acceleration. The same type
of noise can be seen in sample gyroscope data, shown in Fig A.3.

As shown in Section 2.1, estimating the angular acceleration of the vehicle from IMU
data requires differentiating gyroscope data. Thus, we strive to use filtering methods
to extract the smoothest possible signal in real-time. This will be useful for control, in
addition to model learning.

A.2.1 IMU Logging

The communication system used to send commands to the robot in flight is a 921600 baud
serial link. Recording the available IMU data at 2 kHz only allows streaming 57 bytes
per sampling time. Further, any additional burden on this link will impact the latency
and bandwidth available for the control commands, which will negatively impact control
performance. Since we wish to log IMU data without impacting control performance, we
need an alternative system to collect the data.

The vehicle has onboard a high capacity SD card that can be used to store data that
is then transferred manually after a flight has completed. However, the standard PX4
logger is not readily configured to log at 2 kHz. Further, since we do not use any of

119

A.2 Sensing

CAN
Driver

Attitude
Estimator

Notch Filter
Bank (24)

IMU
@ 2 KHz

Feedback
Controller
@ 500 Hz

Enable/Disable Cmd
Attitude Cmd, Yaw

Att. Cmd
@ 100 Hz

Attitude
Ang. Vel.
AA Dist.

All inter-thread
communication

via uORB

SD
Card

SPI
Driver

Serial
Driver

Radio

LPF

Logger Thread

Main Control
Thread

LPF

RPM
RPM

RPM

RPM

RPM

Yaw

ESC

Logger

CAN Thread

Nuttx Thread

PX4 Code

Accel (A)

AG

AG

Accel/Gyro Att. State

AG

Gyro (G)

Att. Cmd RPM

Figure A.1: Pixracer firmware implementation system diagram. Threads are delineated
with dashed boxes. Inter-thread communication is done using the uORB PX4 module.
All code is in-house with the exception of the SPI IMU driver and the CAN driver.

380.0 380.5 381.0 381.5 382.0 382.5 383.0 383.5 384.0

Time (s)

−20

−15

−10

−5

0

5

10

15

20

A
cc

el
X

(m
/s

2
)

Sample Raw Accelerometer Data

Figure A.2: Raw accelerometer data from a quadrotor at hover.

120

A.2 Sensing

380.0 380.5 381.0 381.5 382.0 382.5 383.0 383.5 384.0

Time (s)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

G
yr

o
X

(r
ad

/s
)

Sample Raw Gyroscope Data

Figure A.3: Raw gyroscope data from a quadrotor at hover.

the standard PX4 modules with the exception of uORB, we do not want to bring in the
overburdened PX4 logger module. We implemented a simple logging system that directly
interfaces with the monolith control module and can record data at 2 kHz.

In order to minimize the writing bandwidth required, IMU data is logged in its original
16-bit representation. In addition, RPMs sent to the ESCs are also logged as 16-bit
integers.

The logging binary format is roughly described using the below C structs for IMU and
RPM logging. Endianness has not been sensitively treated, although it will be clear if
incorrect on the log reading side.

struct imu_msg {
uint8_t msg_type = 1;
uint64_t timestamp; // Time since firmware boot in microseconds.
int16_t gyro[3]; // X, Y, and Z gyroscope data.
int16_t accel[3]; // X, Y, and Z accelerometer data.

};
struct imu_msg {

uint8_t msg_type = 2;
uint16_t rpms[4]; // Commanded RPMs of all four motors.

};

To avoid filesystem and hardware delays, the Nuttx write method is only called after an
internal buffer of configurable size has been filled. It is important not to call the write
method in the control thread, since it may block while I/O operations are completing.

121

A.2 Sensing

100

200

300

400

500

600

Fr
eq

ue
nc

y
(H

z)
Accelerometer Spectrogram and Motor RPMs

0 10 20 30 40 50 60 70

Time (s)

6000
7000

R
P

M

Figure A.4: Spectrogram of x-axis accelerometer data aligned with smoothed desired
RPMs from a vehicle at hover. Blue corresponds to low amplitude and yellow corresponds
to high amplitude. Note that coloring has been normalized for each of the 6 bands of
noise present in the spectrogram.

The large latencies will add too much jitter to the timing of the control commands.

The solution we employ is to call write in a separate Nuttx thread, so that the control
loop can continue to run while the I/O operation is processed. IMU and RPM values
are passed from the main control thread to the logging thread using uORB messages.
Despite the dedicated logging thread, the internal buffer size used to control how often
write is called is still important to avoid timing deadline overruns. A buffer size of 256
bytes was eventually settled on. Both larger and smaller buffers increased the frequency
and magnitude of control timing deadline misses. A more rigorous analysis of the logging
subsystem may be performed in future work.

A.2.2 Notch Filtering

The periodic nature of the noise present in the IMU data suggests that the noise may
be restricted to a narrow frequency band. To visualize this, we compute a spectrogram
of the IMU data.

Figure A.4 shows the spectrogram of the x-axis accelerometer aligned with motor RPMs
during hover, and displays 6 bands of noise that track very closely with the RPM values.
The 6 bands of noise correspond to 6 harmonics of the frequency equal to the RPM of
the motors. For example, 6500 RPM is ∼108 Hz, and that is approximately where the
first band is seen in the spectrogram.

To filter out this noise, we use digital filters that are tuned to narrowly remove specific
frequencies from the signal. We can compute the frequencies we want to remove if we
know the RPMs of all four motors. Since at this time we do not have high-rate RPM
feedback from the ESCs, we resort to using the desired RPM values sent from the Flight
Controller. Since the true RPMs cannot instantaneously achieve the commanded RPMs
due to motor inertia, we smooth the commanded RPMs before using them to compute

122

A.2 Sensing

the notch filter frequencies.

Since there are four motors on a typical quadrotor and we see six main harmonics of
noise in the spectrogram, we need to filter out 24 different frequencies. We rely on digital
biquad filters for high-rate operation on an embedded system. Biquad filters are 2nd order
notch filters that filter out one frequency and have five free parameters. In order to filter
out each of the 24 frequencies of interest, we need to serially cascade 24 notch filters.
Implementing this cascaded filter digitally can be done either by convolving each of the
filter coefficients to obtain a single filter of a much higher order, or by applying each
of the filters sequentially. Although the former method may be computationally faster,
quantization of the coefficients of a very high-order filter can lead to massive instabilities.
Thus, the latter is preferred and used here.

Designing the notch filter is out of scope for this thesis. Here we discuss the computation
required to compute filter coefficients and implement it on the platform. We also compare
notch filter formulations found on standard open-source drone firmware.

Second order biquad filters have the following computational form.

yn = b0xn + b1xn−1 + b2xn−2 − a1yn−1 − a2yn−2 (A.1)

Here, the coefficients b0, b1, and b2 correspond to the numerator of the filter transfer
function and encode its zeros. The coefficients a1 and a2 correspond to the denominator
of the transfer function and encode the poles. a0 is implicitly assumed to be one here.
Equation (A.1) implements Direct Form I. Although Direct Form II is more efficient
and only requires two delay elements1, it does not allow changing coefficients during
operation, as its delay elements require multiplication with the coefficients.

Second order notch filters require specification of two parameters, the desired frequency
to filter out, and the desired width of the notch. We know that we need to set the desired
frequency to that corresponding to the particular harmonic of a particular motor. The
notch width should be wide enough to maximally filter out frequency from that motor at
the harmonic, and it should be narrow enough to minimize latency from high frequency
changes in the signal not arising from vibrations.

A.2.2.1 Implementation

Let fs be the sampling frequency of the system, f0 the desired frequency to filter, and
Q the quality factor, which specifies the width of the notch (a higher Q corresponds to
a more narrow notch).

The PX4 codebase implements the notch filter as follows.2. This matches the implemen-
1https://ccrma.stanford.edu/~jos/filters/Direct_Form_II.html
2https://github.com/PX4/Firmware/blob/b12a655c5bd39ecf65b8001b6f9256d2a5dcce70/src/lib/mathlib/math/filter/NotchFilter.hpp#L171

123

https://ccrma.stanford.edu/~jos/filters/Direct_Form_II.html
https://github.com/PX4/Firmware/blob/b12a655c5bd39ecf65b8001b6f9256d2a5dcce70/src/lib/mathlib/math/filter/NotchFilter.hpp#L171

A.2 Sensing

Table A.1: Average time to apply 24 notch filters to accelerometer and gyroscope data

Method Time (stddev) in µs
Full trig 130

Poly. approx. trig 82.51 (1.45)

tation of SciPy’s iirnotch3, which is derived from [71], pg. 575.

ω =
2πf0
fs

β = tan

(
ω

2Q

)
(A.2)

b0 = b2 =
1

1 + β
b1 = a1 = −2 cos(ω)

1 + β
a2 =

1− β

1 + β
(A.3)

The Betaflight codebase implements the notch filter slightly differently.4

ω =
2πf0
fs

β =
sin_approx(ω)

2Q
(A.4)

b0 = b2 =
1

1 + β
b1 = a1 = −2 cos(ω)

1 + β
a2 =

1− β

1 + β
(A.5)

Betaflight’s implementation does two things differently: (1) β is computed slightly dif-
ferently and (2) polynomial approximations are used in place of the true trigonometric
functions. This will be important to ensuring that filter parameters can be updated at
the rate at which RPMs are received. It is important to note that both implementations
have identical zero locations and filter out the same frequency. It is the gain, or the width
of the notch as a function of the quality factor Q, that differs.

We implement the “more widely used” method from PX4 and [71] and inspect the filtering
timing using PX4’s perf_counters to see the impact of trigonometric approximations.
Table A.1 shows the time it takes to apply 24 filters for the full trigonometric functions
as compared to the polynomial approximations. Since applying the full trigonometric
functions adds a non negligible amount of time (50µs) to the control loop relative to the
total sample time of 500µs, we use approximate trigonometric tan and cos.

A.2.2.2 Results

Offline We apply notch filtering to a dataset from a quadrotor at hover. We use a
quality factor of Q = 5.0 and an exponential smoothing time constant of 20.0 for the
RPMs.

Figures A.5 and A.6 show the results for the x-axis accelerometer and x-axis gyroscope
data. There is a clear reduction in the noise after filtering. The standard deviation from
the mean before and after filtering is 6.065m/s2 and 0.595m/s2 for the accelerometer
data and 0.229 rad/s and 0.067 rad/s for the gyroscope data.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html
4https://github.com/betaflight/betaflight/blob/b2e99c66510e364903b02db1624d1ec78c9ca527/src/main/common/filter.c#L107

124

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html
https://github.com/betaflight/betaflight/blob/b2e99c66510e364903b02db1624d1ec78c9ca527/src/main/common/filter.c#L107

A.2 Sensing

380 381 382 383 384 385

Time (s)

−20

−10

0

10

20

30

A
cc

el
X

(m
/s

2
)

Filtered Accel X Data

Raw
Notch Filter

Figure A.5: Filtered accelerometer data from a quadrotor at hover.

380 381 382 383 384 385

Time (s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

G
yr

o
X

(r
ad

/s
)

Filtered Gyro X Data

Raw
Notch Filter

Figure A.6: Filtered gyroscope data from a quadrotor at hover.

125

A.2 Sensing

Figure A.7: The spectrogram of the raw accelerometer data is on the left and each
successive spectrogram is after notch filtering all six harmonics of an additional motor.

0 5 10 15 20 25

Time (s)

6200

6400

6600

6800

7000

R
P

M

RPM

Fixed Notch
Dynamic Notch

Figure A.8: Comparison between motor speeds at hover with and without the dynamic
notch filter.

To visualize the effects of notch filtering at frequencies from all four motors and to
visualize the precision of the individual notch filtering, we compute spectrograms after
filtering of all harmonics for each motors is completed. The results are shown in Fig. A.7.
We see that filtering from all four motors is required to completely eliminate the visible
noise bands in the spectrogram for the chosen quality factor Q = 5.

Online Figure A.8 compares the RPM values for 25 seconds during hover with the old
fixed frequency notch and the dynamic notch. Figure A.9 shows the standard deviations.
The dynamic filter has drastically reduced the noise in the outputted RPM commands.
Figures A.10 and A.11 compare the standard deviations in unfiltered IMU data. Although
the standard deviation has decreased along some axes, there does not appear to be
a drastic reduction in noise in the unfiltered IMU data. This suggests that the large
reduction in RPM output noise has not resulted in a large enough change in vehicle
motion to be detected by the IMU.

To show the reduction in noise by applying the dynamic notch filter, we compare the

126

A.2 Sensing

5 10 15 20 25

Time (s)

20

40

60

80

100

120

140

160

R
P

M

RPM Std. Dev.

Fixed Notch
Dynamic Notch

Figure A.9: Comparison between RPM standard deviations over a 2 second window
during hover with and without the dynamic notch filter.

5

6

7

X
(m

/s
2
)

IMU Accel Std. Dev.

Fixed Notch
Dynamic Notch

5

10

Y
(m

/s
2
)

5 10 15 20 25

Time (s)

5.5

6.0

6.5

Z
(m

/s
2
)

Figure A.10: Comparison between unfiltered accelerometer data standard deviations over
a 2 second window during hover with and without the dynamic notch filter.

127

A.2 Sensing

0.20

0.25

X
(r

ad
/s

)

IMU Gyro Std. Dev.

Fixed Notch
Dynamic Notch

0.100

0.125

0.150

Y
(r

ad
/s

)

5 10 15 20 25

Time (s)

0.15

0.20

0.25

Z
(r

ad
/s

)

Figure A.11: Comparison between unfiltered IMU gyroscope data standard deviations
over a 2 second window during hover with and without the dynamic notch filter.

variance of filtered IMU data with the raw IMU data and the IMU data filtered using
6 harmonics of a static notch. The static notch filter frequency is chosen to match the
average RPM for the duration of the vehicle’s hover and its Q value is the same as that
used in the dynamic notch filter, Q = 5. Table A.2 shows the variance in all six IMU
axes for all three approaches. Figures A.12 and A.13 show the variance over time.

We see that while static notch filtering substantially reduces the noise of both accelerom-
eter and gyroscope data, dynamic notch filtering further reduces the noise by at least an
order of magnitude for the accelerometer and a factor of around 3 for the gyroscope.

Table A.2: Accelerometer (m/s2) and gyroscope (rad/s) average data variance during a
25 second hover for the raw IMU data, IMU data filtered using a static notch filter, and
IMU data filtered using a dynamic RPM-based notch filter

Raw IMU Data Static Notch Dynamic Notch
Accel X 29.86 1.50 0.09
Accel Y 114.04 5.70 0.09
Accel Z 35.99 2.50 0.68
Gyro X 3.55e-2 0.31e-2 0.11e-2
Gyro Y 0.84e-2 0.12e-2 0.06e-2
Gyro Z 5.87e-2 0.40e-2 0.05e-2

128

A.2 Sensing

0

1

2

X
(m

2
/s

4
)

Smoothed IMU Accel Variance (N = 4000)

Static (1.496703)
Dynamic (0.085226)

0

5

Y
(m

2
/s

4
)

Static (5.697135)
Dynamic (0.091849)

5 10 15 20 25

Time (s)

0

2

Z
(m

2
/s

4
)

Static (2.502676)
Dynamic (0.680067)

Figure A.12: Comparison between IMU accelerometer data variances when filtered with
a static and dynamic notch.

0.000

0.002

0.004

X
(r

ad
2
/s

2
)

Smoothed IMU Gyro Variance (N = 4000)

Static (0.003086)
Dynamic (0.001063)

0.000

0.001

Y
(r

ad
2
/s

2
)

Static (0.001163)
Dynamic (0.000616)

5 10 15 20 25

Time (s)

0.000

0.002

0.004

Z
(r

ad
2
/s

2
)

Static (0.004004)
Dynamic (0.000514)

Figure A.13: Comparison between IMU gyroscope data variances when filtered with a
static and dynamic notch.

129

A.2 Sensing

A.2.2.3 Implications

Smoother IMU data enables improvements in two areas, with appropriate hyperparam-
eter optimization:

1. Better attitude estimation performance by updated complementary filter gains.
This is a tradeoff between reducing bias and noise.

2. Better attitude control loop performance by updated control gains. Lower noise in
the gyroscope and attitude estimates should allow for stronger gains.

Complementary Filter Gains The attitude estimator used onboard the vehicle is a
complementary filter that combines incoming accelerometer measurements a ∈ R3 and
gyroscope measurements ω ∈ R3. The filter state is the gravity direction in the body
frame, or the third row of the rotation matrix representing the orientation of the vehicle
with respect to the world frame.

R⊤gW = gB (A.6)r1r2
r3

⊤ 00
1

 = r3 (A.7)

We assume the 3-axis accelerometer is a direct measurement of this vector, gB. We
will drop the superscript in this section and refer to the quantity estimated by the
filter as ĝ. This assumption notably fails when the vehicle is following trajectories
with non-negligible acceleration. Linear acceleration compensation is addressed in Sec-
tion A.2.5.

The complementary filter is a weighted average of two estimates of g: the estimate
from the accelerometer a, and the estimate from the gyroscope. The estimate from the
gyroscope is computed by rotating the current estimate ĝ by the rotation indicated by
the gyroscope measurement ω. To compute this, we differentiate (A.6).

ġ = Ṙ⊤e3 (A.8)

= (R[ω]×)
⊤ e3 (A.9)

= [ω]⊤×R
⊤e3 (A.10)

= −[ω]×g (A.11)
ġ = g × ω (A.12)

The complementary filter with weight w is shown below.

ĝt+1 = w
at

||at||
+ (1− w) (ĝt + ĝt × ωtdt) (A.13)

To maintain the unit norm constraint on g, we normalize ĝ after every filter step.
Although not a filter “on the manifold”, this filter is simple and avoids expensive com-
putations that “manifold-based” filters may require such as matrix exponentials.

130

A.2 Sensing

Pitch, θ, and roll, ϕ, (as defined by ZYX Euler angles) are computed from ĝ using
trigonometric operations, shown below.

θ = arctan2 (ĝ2, ĝ3) (A.14)
ϕ = arcsin (−ĝ1) (A.15)

To find the optimal filter weight, we perform an optimization with several simplifying
assumptions:

1. The axes are decoupled; we analyze along one dimension.

2. The norm of the accelerometer reading is constant.

3. We assume there is no gyroscope bias.

With these assumptions, we take the variance of (A.13) and optimize with respect to w
by differentiating. We further assume that the variance is at steady state, i.e. Var[ĝt+1] =
Var[ĝt].

Var[ĝ] =
w2

||a||2
Var[a] + (1− w)2

(
Var[ĝ] + dt2Var[ω]

)
(A.16)

Let σ2
1 = Var[a]

||a||2 and σ2
2 = dt2Var[ω]. Solving for the variance of the estimate Var[ĝ], we

get

Var[ĝ] =
w2σ2

1 + (1− w)2σ2
2

w(2− w)
(A.17)

Symbolically optimizing this for w results in

w =

√
σ2
2(4σ

2
1 + σ2

2)− σ2
2

2σ2
1

(A.18)

With (A.18) we can compute the theoretically optimal complementary filter weight given
variances of accelerometer and gyroscope readings. Table A.3 shows the optimal weights
and predicted variance for the filter options. Although we see a dramatic reduction
in predicted variance between the static notch filter and the raw data, the optimal
filter weight has not changed much. The optimal filter weight increases by around a
factor of 3 when using the dynamic notch filter, suggesting that the reduced noise in
the accelerometer reading makes it slightly more useful. The expected variance for the
dynamic rpm notch filter using the optimal weight from the static notch filter is 6.02e-7,
around double of what it would be if we used the optimal weight. Although a factor of
2 increase in variance may be significant, it’s not clear how well the predicted variances
match the true output variances, especially given the simplifying assumptions made.
Further, the attitude estimates are used in concert with gyroscope estimates, which
have higher variances than the outputted pitch and roll estimates. It may be the case
that variance / noise in the attitude estimate is dwarfed by the variance in the filtered
gyroscope data when concerned with overall control loop performance.

131

A.2 Sensing

Table A.3: Optimal complementary filter weights based on (A.18) using statistics from
the raw IMU data, IMU data filtered using a static notch filter, and IMU data filtered
using a dynamic RPM-based notch filter

Raw IMU Data Static Notch Dynamic Notch
Weight w 1.31e-4 1.43e-4 4.20e-4

Predicted Variance 1.62e-5 2.04e-6 3.66e-7

0 5 10 15 20 25

Time (s)

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

P
it

ch
(r

ad
)

Pitch

DF
SF
Raw

Figure A.14: Pitch computed using raw IMU data (Raw), IMU data filtered using a
static notch (SF), and IMU data filtered using a dynamic notch (DF).

To get a sense for how well the variance of the complementary filter’s output matches
the predicted variance, we run the complementary filter using the three filtering options
and their respective optimal weights and an additional baseline weight of w = 1e-4.
Unfortunately, the gyroscope readings contain non negligible gyroscope bias. To mitigate
this for this analysis, we take average gyroscope readings during the 25 second hover and
subtract it out to avoid drifting pitch and roll estimates. Gyroscope bias estimates are
added to the filter state in Section A.2.3.

Figures A.14 and A.15 show the resulting pitch and roll estimates, while Figs. A.16
and A.17 show smoothed variances of the pitch and roll estimates. The variances are
computed with respect to a mean computed by filtering the pitch and roll estimates
using a Savitzky–Golay filter5 with a window size of 501 (0.5 seconds) and 3rd order
polynomials.

The variance data shows three things. First, that there is an ordering in variance between
5https://en.wikipedia.org/wiki/Savitzky-Golay_filter

132

https://en.wikipedia.org/wiki/Savitzky-Golay_filter

A.2 Sensing

0 5 10 15 20 25

Time (s)

−0.12

−0.11

−0.10

−0.09

−0.08

−0.07

R
ol

l(
ra

d)

Roll

DF
SF
Raw

Figure A.15: Roll computed using raw IMU data (Raw), IMU data filtered using a static
notch (SF), and IMU data filtered using a dynamic notch (DF).

5 10 15 20 25

Time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
it

ch
(r

ad
2
)

×10−7 Pitch Variance

DF
DF (1e-4)
SF
SF (1e-4)
Raw
Raw (1e-4)

Figure A.16: Variances of pitch computed using raw IMU data (Raw), IMU data filtered
using a static notch (SF), and IMU data filtered using a dynamic notch (DF).

133

A.2 Sensing

5 10 15 20 25

Time (s)

0.5

1.0

1.5

2.0

2.5

R
ol

l(
ra

d2
)

×10−7 Roll Variance

DF
DF (1e-4)
SF
SF (1e-4)
Raw
Raw (1e-4)

Figure A.17: Variances of roll computed using raw IMU data (Raw), IMU data filtered
using a static notch (SF), and IMU data filtered using a dynamic notch (DF).

using raw data, static filtering, and dynamic filtering. This makes sense as smoother data
in results in smoother data out. Second, it shows that the outputted variances do not
match the predicted variances from Table A.3. This is a result of simplifying assumptions
as well as a lack of ground truth. It’s not clear what the true mean of the pitch and roll
estimates are. The Savitzky–Golay filter is a reasonable choice to showcase the noise
reduction more clearly.

Third, we see that the optimal weight may not result in the lowest variance. For example,
Fig A.17 shows that the dynamic filter with a weight of 1e-4 achieves slightly lower
variance than with its predicted optimal weight of 4.2e-4. Again, this is likely a result of
simplifying assumptions and tells us that there is not much to be gained by optimizing
the filter weight according to the observed input data variance. Practically, the filter
weight should look at the output data variance and finding the optimal value requires
some trial and error. However, this analysis shows that the benefits of finding the optimal
filter weight are quite small anyway.

Control Gains The filtered gyroscope data is directly used as the angular velocity
signal in the attitude control loop. Since the noise present in the attitude estimate is
lower than that present in the gyroscope data, reducing gyroscope data noise should allow
for stronger gains, improving control performance without destabilizing the vehicle.

A simple linearized analysis can be used to predict what increase in gains are feasible
given the reduction in input data variance.

134

A.2 Sensing

−0.10

−0.05

0.00

R
ol

l(
ra

d)

Euler Angles: Hover

0 20 40 60 80 100 120

Time (s)

0.00

0.05

0.10

0.15

P
it

ch
(r

ad
)

Vicon
CF
CF + Bias Est.

Figure A.18: Comparison of estimated pitch and roll during hover between a
complementary filter with bias estimation and one without.

A.2.3 Gyro Bias Estimation

We extend the complementary filter described in Section A.2.2.3 to estimate gyroscope
biases, b ∈ R3. We rewrite (A.13) using the quantities ĝacc

t = at
||at|| and ĝgyro

t = ĝt +

ĝt × (ωt − bt) dt representing the gravity vector estimate from the accelerometer and
the gyroscope respectively. Note the gravity vector estimate from the gyroscope includes
compensation for the estimated biases bt.

ĝt+1 = wĝacc
t + (1− w)ĝgyro

t (A.19)

To update our estimate of the bias bt we use ĝacc × ĝgyro, which represents the delta
rotation between the gravity vector estimate from the accelerometer and that from the
gyroscope, multiplied by a gain wb. Essentially, we assume that any difference, on average,
between the gravity vector estimated by the accelerometer and that estimated by the
gyroscope is due to gyro bias.

bt+1 = bt − wb (ĝ
acc × ĝgyro) dt (A.20)

Figure A.18 shows the pitch and roll estimates of a complementary filter with the
proposed bias estimation strategy and those from one without on data from a vehicle at
hover. Figure A.19 shows the resulting biases estimated by the filter. For this experiment,
w = 0.0001 and wb = 0.01. We see that the biases converge slowly and result in the
estimated pitch more closely matching the pitch measured by motion capture, while the

135

A.2 Sensing

0.000

0.005

X
(r

ad
/s

)

Gyro Biases: Hover

0.00

0.01

0.02

Y
(r

ad
/s

)

Bias
Avg. Gyro

0 20 40 60 80 100 120

Time (s)

0.000

0.001

0.002

Z
(r

ad
/s

)

Figure A.19: Estimated gyro biases during the hover from Fig. A.18.

estimated roll matches motion capture less closely. This suggests that there is likely a
transform offset between the center of the IMU and the center of the vehicle’s motion
capture model.

To test the stability and robustness of the complementary filter with gyro bias estimation,
we test it on a trajectory where the vehicle is executing aggressive circles.

Figures A.20 and A.21 show the resulting pitch and roll and bias estimates respectively.
We see that although the gyro biases do deviate slightly while the vehicle is following
the circular trajectories, they remain relatively stable. There is some pitch and roll drift
present at around 90 seconds that is present in both the filter with and without gyro bias
estimation. This suggests that the likely culprit is the violation of the assumption that
there is no linear acceleration acting on the vehicle, which would affect both filters.
A strong acceleration is required to keep the vehicle moving in a circular motion.
Compensation of vehicle linear acceleration is discussed in Section A.2.5.

A.2.4 Kalman Filter for Disturbance Estimation

We formulate a Kalman filter to estimate the orientation state, gyroscope biases, and
angular acceleration disturbance acting on the vehicle. This filter serves as a baseline for
the model learning work done later.

In the filter state, we include

• z ∈ S2, the z-world axis expressed in the body frame

136

A.2 Sensing

−0.5

0.0

0.5

R
ol

l(
ra

d)

Euler Angles: Circles

0 20 40 60 80 100 120

Time (s)

−0.5

0.0

0.5

P
it

ch
(r

ad
)

Vicon
CF
CF + Bias Est.

Figure A.20: Comparison of estimated pitch and roll between a complementary filter
with bias estimation and one without for a vehicle following several aggressive circular
trajectories.

0.000

0.005

0.010

X
(r

ad
/s

)

Gyro Biases: Circles

0.00

0.01

0.02

Y
(r

ad
/s

)

Bias
Avg. Gyro

0 20 40 60 80 100

Time (s)

−0.004

−0.002

0.000

Z
(r

ad
/s

)

Figure A.21: Estimated gyro biases during the flight from Fig. A.20.

137

A.2 Sensing

• ω ∈ R3, the angular velocity in the body frame

• b ∈ R2, the x and y gyroscope biases

• d ∈ R3, the angular acceleration disturbance

Although it’s possible to include the position state of the vehicle and leverage accelerom-
eter data for higher rate and higher accuracy position feedback, we do not include it in
this baseline for the following reasons.

1. Adding position state would include a lot of complexity and as the filter needs to
run on the vehicle firmware, we strive to keep computational costs low.

2. Accelerometer data is quite noisy despite the filtering done and the gains from
including it to estimate position may be low.

To reduce complexity further, we also eliminate yaw information. This allows the filter
to be decoupled from any motion capture or vision-based state estimation source, while
still keeping all state entries observable. This precludes estimation of the z gyroscope
bias while the vehicle is level.

For the system control input, we use

• α ∈ R3, the body frame angular acceleration

For the system observations, we use

• a ∈ R3, the 3-axis accelerometer measurement

• g ∈ R3, the 3-axis gyroscope measurement

A.2.4.1 Process Model

We use a discrete process model with a step size of T , where z and ω are corrupted with
Gaussian noise at every step, and b and d follow a random walk. The discrete model is
derived using single step integration of the continuous dynamics.

The z axis estimate is driven by the angular velocity estimate.

zi+1 = zi + (zi × ω)T + ϵz (A.21)

The angular velocity is updated by the control, α, and the disturbance estimate, d.
Since d is in R2, we abuse notation here and let d refer to a vector in R3 with the third
component equal to zero.

ωi+1 = ωi + (αi + di)T + ϵω (A.22)

The bias and disturbance follow random walks, which is equivalent to added noise in the
discrete setting.

bi+1 = bi + ϵb (A.23)
di+1 = di + ϵd (A.24)

138

A.2 Sensing

A.2.4.2 Observation Model

The accelerometer measurement includes gravity, which points in the direction of the
world z-axis, and a linear acceleration component. Here, ag is the gravitational acceler-
ation constant approximately equal to 9.81m/s2.

ai = agzi + alin + ϵa (A.25)

The gyroscope measurement is a sum of the angular velocity and the biases.

gi = ωi + bi + ϵg (A.26)

A.2.4.3 Algorithm

Algorithm choices include

• EKF

• UKF

• Asymptotic Kalman filter / LTI filter

For simplicity, we choose an asymptotic Kalman filter. This entails solving the discrete
Ricatti equation to compute the asymptotic Kalman gain. The dynamics model used
to propagate the covariance in the pre-computation is the linearization of the model at
hover.

Although this precludes estimating covariances, we feel those are of marginal benefit for
the following reasons.

1. Sensor noise during flight is very consistent, barring any failures in notch filtering.

2. The vehicle spends most of its time near-hover. State estimate covariances changes
due to changing flight conditions are transient and should not affect the optimal
state estimator much.

A large benefit of the asymptotic Kalman filter is its computational efficiency over an
EKF or UKF, making an embedded implementation relatively easier.

A.2.4.4 Parameters

Implementing the asymptotic Kalman filter requires the selection of variances for the
following random variables.

1. Process noise of world z-axis, ϵz from (A.21)

2. Process noise of angular velocity, ϵω from (A.22)

3. Process noise of gyro bias, ϵb from (A.23)

4. Process noise of angular acceleration disturbance, ϵd from (A.24)

5. Measurement noise of accelerometer, ϵa from (A.25)

139

A.2 Sensing

Table A.4: Attitude Kalman filter noise parameters

Parameter Value
ϵz 10−12

ϵω 10−4

ϵb 10−15

ϵd 10−2

ϵa 5× 10−1

ϵg 2× 10−4

0.00

0.05

0.10

0.15

X
(r

ad
/s

)

IMU Biases

0 20 40 60 80 100 120

Time (s)

−0.2

−0.1

0.0

0.1

Y
(r

ad
/s

)

CF (No Acc Comp)
CF (Acc Comp: Vicon)
CF (Acc Comp: PosIn)
CF (Acc Comp: AttIn)
KF (No Acc Comp)
KF (Acc Comp: Vicon)
KF (Acc Comp: PosIn)
KF (Acc Comp: AttIn)

Figure A.22: Gyro biases estimated during flight while following an aggressive
3D trajectory for various linear acceleration compensation strategies for both the
complementary filter (CF) and the Kalman filter (KF). Strategies that do not compensate
for linear acceleration experience severe gyro bias drift.

6. Measurement noise of gyroscope, ϵg from (A.26)

Table A.4 shows the parameters used in this thesis. The Kalman filter update weights
are computed by solving the discrete algebraic Ricatti equation offline.

A.2.5 Linear Acceleration Compensation

We test linear acceleration compensation in the both the complementary and Kalman
filter attitude estimators using the following linear acceleration sources.

1. Acceleration measured by Vicon

2. Desired acceleration from the reference trajectory (input to the position controller,
PosIn)

140

A.2 Sensing

−1.0

−0.5

0.0

0.5
R

ol
l(

ra
d)

Euler

112 114 116 118 120 122 124 126

Time (s)

−0.5

0.0

0.5

1.0

P
it

ch
(r

ad
)

Vicon
CF (No Bias, No Acc Comp)
CF (No Acc Comp)
CF (Acc Comp: Vicon)
CF (Acc Comp: PosIn)
CF (Acc Comp: AttIn)
KF (No Acc Comp)
KF (Acc Comp: Vicon)
KF (Acc Comp: PosIn)
KF (Acc Comp: AttIn)

Figure A.23: Roll and pitch angle estimated after following an aggressive 3D trajectory
for various linear acceleration compensation strategies for both the complementary
filter (CF) and the Kalman filter (KF). Strategies that do not compensate for linear
acceleration experience several pitch and roll drift, as a result of bias estimation drift.
Note that the strategy that does not estimate biases (sparse blue dots) does not suffer
from pitch and roll drift, despite not compensating for linear acceleration.

3. Desired acceleration input to the attitude controller (after position and velocity
feedback, AttIn)

Estimated gyro biases and tilt angles after post-processing an aggressive flight dataset
are shown in Figs. A.22 and A.23. Strategies that compensate for linear acceleration
experience much less gyro bias drift, and thus pitch and roll drift, than those that
do not. Interestingly, the complementary filter without bias estimation does not suffer
without linear acceleration compensation, indicating that the linear acceleration’s effect
on attitude estimate accuracy is not direct, but rather indirect through the estimated
gyro biases. This behavior is likely heavily dependent on the particular filter weights
chosen (w = 0.0001 and wb = 0.01 for the complementary filter.). Lower gyroscope
bias weights, corresponding to slower gyro bias estimation, may reduce the impact of
uncompensated linear acceleration.

We choose to use the acceleration measured by Vicon, as it performs well during post-
processing and unlike the desired acceleration, provides the true acceleration of the
vehicle.

141

Bappendix

Rotational Error Metric Case Studies

The contents of this section first appeared in [81] and were presented at the IROS 2020
workshop: Perception Learning and Control for Autonomous Agile Vehicles.

B.1 Introduction

Here we introduce the concept of rotational error functions to analyze the performance
and stability of various attitude controllers in the literature.

We analyze and compare various attitude error metrics that have been proposed for use
in quadrotor attitude controllers.

For brevity, we consider regulation, not trajectory tracking, but all of the results here
can be extended to work for trajectory tracking, where the desired angular velocity ωdes

and the desired angular acceleration αdes are nonzero.

The structure of quadrotor attitude controllers that we consider is a PD controller on
rotational error, as defined by a rotational error metric eR, scaled by a diagonal attitude
gain matrix KR, and angular velocity ω, scaled by a diagonal angular velocity gain
matrix Kω.

α = −KReR(R,Rdes)−Kωω (B.1)

Several works in the literature have noted that, since the quadrotor’s position dynamics
depend solely on its tilt, or body z-axis, it makes sense to prioritize vehicle tilt over
vehicle yaw [13, 22, 31, 48, 66]. We confirm this, and show that such metrics amount
to inducing a response in the direction of the cross product between the current and
desired body z-axes, along with a response around the body z-axis. We show that this
decomposition linearizes the vehicle error response better than the traditional attitude
controller, which uses the full rotation error. Following straight paths in the presence of
large tracking error can be beneficial for overall control performance.

In this section, we place various controllers used in the literature in the framework
described above. First, as in Mueller [66], we define rotational error Re as

Re = R⊤
desR (B.2)

and its corresponding angle and axis as ρe and ne.

142

B.2 Full Rotation Metrics

The vehicle attitude R transforms vectors from the body frame B into the fixed frame,
and is represented using a matrix whose columns x, y, and z are the coordinate frames
axes of the body.

R =
(
x y z

)
(B.3)

We define the thrust vector error Rtv as the rotation between the z-axes of the current
and desired attitude, along with its associated angle ρtv and axis ntv. This rotation can
be defined via its angle and axis in terms of the full rotation error Re as shown below
[66].

ρtv = cos−1(e⊤3 Ree3) (B.4)

ntv =
(R⊤

e e3)× e3
||(R⊤

e e3)× e3||
(B.5)

To help visualize ntv, note that it is just the normalized cross product of the desired
z-axis zBdes = R⊤Rdese3 with the current z-axis of the body zB = e3, expressed in the
body frame. As a result, n⊤

tve3 = 0.

ntv =
zBdes × zB

||zBdes × zB||
(B.6)

We define the yaw error Ryaw as the remaining error around the body z-axis, i.e. the
rotation needed to align the current rotation to the desired rotation after aligning the z
axes.

Ryaw = ReR
−1
tv (B.7)

ρyaw represents the angle associated with Ryaw and nyaw represents the axis, which is
either e3 = (0, 0, 1)⊤ or −e3, and thus perpendicular to ntv.

B.2 Full Rotation Metrics

A rotational error metric directly in SO(3) is used in [34, 51, 61]. As shown in [66], this
metric is proportional to the sine of the angle error ρe and in the direction of the shortest
path ne.

eAR (R,Rdes) =
1

2

(
Re −R⊤

e

)∨
= sin ρene (B.8)

Lee [50] notes the issues with using a rotational error metric that is proportional to the
sine of the error, namely that the response is strongest at an error of 90◦ and weakens
as the error increases, reaching zero at an error of 180◦. While this ensures smoothness
of the response, it results in slow convergence when the error is high. Lee [50] proposes
rescaling the rotational error. 1

eBR(R,Rdes) =
2√

1 + tr (Re)
sin ρene (B.9)

1We add a factor of 2 to match the linearization around ρe = 0 of (B.8).

143

B.3 Thrust Vector – Yaw Decomposition Metrics

Using the fact that tr (Re) = 2 cos ρe + 1 [66] and the sine half angle identity sin
(
θ
2

)
=√

1−cos θ
2

, (B.9) can be rewritten as

eBR(R,Rdes) = 2 sin
(ρe
2

)
ne. (B.10)

(B.10) is mathematically equivalent to the rotational error used in Fresk and Niko-
lakopoulos [29], which is the axis component of the error quaternion. The axis component
of a quaternion is the sine of the half angle multiplied by the axis.

Similarly, one can use an error response that is directly proportional to the angle.

eCR(R,Rdes) = ρene. (B.11)

This is likely not as widely used, since unlike (B.8) and (B.9), evaluating (B.11) from
a rotation matrix or quaternion attitude representation requires inverse trigonometric
function evaluations, which may be expensive on an embedded platform.

B.3 Thrust Vector – Yaw Decomposition Metrics

In this section we will characterize the attitude controls used by works that decompose
attitude into a thrust vector and yaw, also known as “reduced attitude control”, with
an emphasis on the control around the body x and y axes. Define, ωXY = z × ż =
ω − (ω⊤z) z.

Kooijman, Schoellig, and Antunes [48] decomposes the attitude representation into S2×
S1, which amounts to controlling the thrust vector direction, an element of S2, inde-
pendently from the rotation around the thrust vector, an element of S1. The control
response around the x and y axes2 in Kooijman, Schoellig, and Antunes [48] is given
as

ωB
XY = R⊤(z × uv) (B.12)

= e3 × (R⊤uv) (B.13)

=
(
−y⊤uv x⊤uv 0

)⊤
, (B.14)

with uv defined as

uv =

k1zdes ρtv ≤ π
2

k1√
1−(z⊤zdes)2

zdes =
k1

sin ρtv
zdes

π
2
< ρtv < π.

(B.15)

Substituting (B.15) into (B.12), we get

ωB
XY =

{
−k1zBdes × zB = −k1 sin ρtvntv ρtv ≤ π

2

−k1 z
B
des×z

B

sin ρtv
= −k1ntv π

2
< ρtv < π.

(B.16)

2For simplicity, we omit the yaw controller from Kooijman, Schoellig, and Antunes [48].

144

B.4 Simulation Case Studies

Assuming a P controller for angular velocity, from (B.16) we can extract the rotational
error metric eR as

eDR (R,Rdes) =

{
sin ρtvntv ρtv ≤ π

2

ntv
π
2
< ρtv < π.

(B.17)

(B.17) has the interesting property that the magnitude of the response is maximum at
an angle of ρtv = π

2
and remains constant as the angle increases from π

2
to π. For ρtv ≤ π

2
,

(B.17) is equivalent to (B.8) for axis-aligned errors.

Brescianini and D’Andrea [12] also decomposes the thrust vector and the yaw, but does
so using two quaternions. The final control law is a sum of a quaternion error representing
the error in the thrust direction and a quaternion error representing the error in the angle
around the body z-axis. The use of quaternions implies that the rotational error metric
is proportional to the sine of the half angle for both the thrust vector error and the yaw
error. The resulting rotational error metric is shown below, with again, a factor of 2
added to match linearizations with the other metrics.

eER(R,Rdes) = 2 sin
(ρtv
2

)
ntv + 2 sin

(ρyaw

2

)
nyaw (B.18)

(B.18) is equivalent to (B.10) for axis-aligned errors.

Mueller [66] proposes a new rotational error metric that is effectively a linear interpola-
tion between (B.11) and only controlling the thrust vector. The rotational error metric
is shown below, with αyaw ∈ [0, 1] used to weight the control of the yaw angle.

eFR(R,Rdes) = αyawρene + (1− αyaw)ρtvntv (B.19)

Unlike, (B.17) and (B.18), (B.19) doesn’t decouple the yaw control from the thrust vector
control for αyaw > 0. As we will show below, this leads to suboptimal performance
in certain situations with large angle errors. As an alternative, we propose to use the
decoupling metric from (B.18), but proportional to the angle, as shown below.

eGR (R,Rdes) = ρtvntv + ρyawnyaw (B.20)

Table B.1 provides a tabulated summary of rotational error metric configurations dis-
cussed.

B.4 Simulation Case Studies

To evaluate the rotational error metrics for the purposes of quadrotor control, we use
the following three scenarios.

1. Direction change.

2. Axis-aligned step with large initial yaw error.

145

B.4 Simulation Case Studies

Table B.1: Comparison matrix of various rotational error metrics

Scaling / Direction Full: ne Decomposed: ntv + nyaw

sin ρ eAR : [34, 51, 61] eDR
∗: [31, 48]

2 sin ρ
2

eBR : [29, 50] eER: [12, 13, 22, 66]

ρ eCR , eFR
†: [66] eGR : Proposed

∗For ρ < π
2 . †For αyaw > 0.

3. Diagonal step.

In order to isolate the effects of the rotational error function, we add an additional
linearizing term to all controllers inspired by the feedback linearization controller: the
final term of (4.37). In effect, this should make the results equivalent to the results using
a quadrotor with angular velocity as a control input instead of angular acceleration. The
largest impact of this is seen during the second scenario, a simultaneous position and
yaw step, where the term allows the decomposing error metrics to follow the straight
line path to the goal (compare to Fig. 4.2). To ensure fairness, the term is applied to all
error metrics.

For the last two experiments, we additionally compare against an Euler angle-based
rotational error metric, defined using the Z-Y-X convention. The yaw ψ, pitch θ, and
roll ϕ, define a rotation matrix using the following map F (ψ, θ, ϕ), with c = cos and
s = sin.

F =

cψcθ cψsθsϕ− cϕsψ sψsϕ+ cψcϕsθ
cθsψ cψcϕ+ sψsθsϕ cϕsψsθ − cψsϕ
−sθ cθsϕ cθcϕ

 (B.21)

The rotational error metric is then defined using the inverse of F , making sure to compute
the shortest angular distance for each angle.

eZYX
R (R,Rdes) = F−1(R)⊖ F−1(Rdes) (B.22)

Videos of the three scenarios discussed here, along with an interactive simulation, can
be found at https://alspitz.github.io/roterrormetrics.html.

B.4.1 Direction Change

The quadrotor is tasked to reach a goal position at (0, 3, 0) after starting at the origin
with a velocity of (0,−5, 0) and an initial roll angle of 80◦. This initial condition is
designed to induce an initial roll error greater than 90◦, so that differences in the
rotational error metric responses at large angle errors are highlighted. Figure B.1 shows
the resulting side view and roll trajectory. The important thing to note here is that the

146

https://alspitz.github.io/roterrormetrics.html

B.4 Simulation Case Studies

−2 −1 0 1 2 3

Y (m)

−0.5

0.0
Z

(m
)

Trajectory Side View

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

R
ol

l(
ra

d)

Roll

eAR

eBR

eCR

eER

Figure B.1: Side view of the trajectory followed (top) and roll (bottom) during the
quick direction change test for various rotational error metrics. Metrics with a response
proportional to the sine of the angle, A, converge much slower than those with a response
proportional to sine of the half-angle, B and E, or the angle, C. Since the trajectory lies
in the Y Z plane, B and E perform identically.

rotational error metric eAR , which has a response proportional to the sine of the angle
error, converges slower than the other metrics. This example shows that metrics that
induce a response proportional to the sine of the angle can suffer from slow convergence
when there is large attitude error.

B.4.2 Step with Yaw Error

In this test, the quadrotor executes a position step and yaw step simultaneously. The
vehicle starts at the origin at a yaw of 90◦ and moves to (0, 3, 0) at a yaw of 0◦. Figure B.2
shows the side view and x position during the experiment. We see that metrics that use
the full rotation error, result in trajectories that do not maintain the desired x position.
Metrics that decompose the response, E and G, maintain the desired x position.

147

B.4 Simulation Case Studies

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Y (m)

−0.25

0.00

Z
(m

)
Trajectory Side View

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

X
(m

)

Position

Euler ZYX

eAR

eBR

eCR

eER

eFR, kyaw = 0.5

eGR
Desired

Figure B.2: Side view of the trajectory followed (top) and x position (bottom) during
a simultaneous 3m position step and 90◦ yaw step for various rotational error metrics.
Only metrics that decompose the thrust vector from the yaw, E and G, maintain the
desired x position.

B.4.3 Diagonal Step

In this test, we show that yaw error is not necessary for the rotational error metrics that
do not decouple the thrust vector from yaw to exhibit suboptimal performance. The
quadrotor is given a diagonal step from the origin to (3, 3, 0), with a desired yaw of 0◦

for the duration of the test. Figure B.3 shows the top view of the trajectories followed
during the experiment for the various error metrics. Metrics that use the full rotation
error, A, B, C, and F, deviate from the diagonal path. This is because the shortest
path in SO(3) from the identity to an orientation that results in the vehicle accelerating
diagonally at the same yaw angle, takes the vehicle through orientations that accelerate in
directions other than the diagonal direction. In other words, the thrust vector projected
onto the horizontal plane does not point in the direction of the desired position.

Metrics that decompose the error into a thrust vector component and a yaw component,

148

B.5 Discussion

0.0 0.5 1.0 1.5 2.0 2.5 3.0

X (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Y

(m
)

Trajectory Top View

Euler ZYX

eAR

eBR

eCR

eER

eFR, kyaw = 0.5

eGR
Desired

Figure B.3: Top view of the trajectory followed during a diagonal step from the origin
to (3, 3, 0) for various rotational error metrics. Only metrics that decompose the thrust
vector from the yaw, E and G, stay on the straight-line diagonal path.

E and G, follow the straight-line diagonal path to the desired position.

B.5 Discussion

We have shown that many quadrotor attitude controllers in the literature can be neatly
characterized using their rotational error metrics’ scaling and direction.

We have shown that rotational error metrics that decompose the attitude error in a
thrust vector component and a yaw component provide superior control performance
than those that use the full attitude error for (1) simultaneous large errors in position
and yaw and (2) diagonal steps.

149

Cappendix

Outdoor Trajectory Generation Details

Richter, Bry, and Roy [77] optimizes the integral of a higher order derivative together with
the total duration of a polynomial trajectory satisfying equality constraints at provided
positions. For the experiments in Chapter 6, we generate trajectories that attain desired
velocity and acceleration limits while passing through user-specified waypoints.

The (x, y) position waypoints used for the 20m and 40m figure 8 trajectories are shown
in Table C.1. The desired z-position and yaw are held constant for the experiments.

The parameters shared among all trajectories flown during the outdoor experiments are
shown in Table C.2.

The optimization method from [77] can be sensitive to initial segment times. The initial
trajectory segment time for segment i constrained between points pi, pi+1 ∈ R3 is
computed according to

t̂i =
||pi+1 − pi||
vmax/2

(C.1)

ti = t̂i

(
1 +

vmax

amax
exp

(
−t̂i
))

(C.2)

where vmax and amax are the velocity and acceleration constraints1. The final segment
times are optimized using the nonlinear optimization described in [77].

The resulting trajectories and their higher order derivatives are shown in Figs. C.1 and C.2.
1We use ETH Zurich Autonomous Systems Lab’s open-source implementation.

-20 -15 -10 -5 0 5 10 15 20
X (m)

−5.0

−2.5

0.0

2.5

5.0

Y
(m

)

Outdoor Figure 8 Trajectories

Figure C.1: The 20m and 40m figure 8s used in the outdoor experiments.

150

https://github.com/ethz-asl/mav_trajectory_generation/blob/7aeebd9f819217502fd1c5489da49efadf90d411/mav_trajectory_generation/src/vertex.cpp#L266

Table C.1: Position waypoints of outdoor figure 8 trajectories

20m 40m
(0, 0) (0, 0)

(−3.5, 0.5) (−7.5, 0.5)
(−7.5, 1) (−15, 1)
(−10, 0) (−20, 0)

(−7.5,−1) (−15,−1)
(−3.5,−0.5) (−7.5,−0.5)

(0, 0) (0, 0)
(3.5, 0.5) (−7.5, 0.5)
(7.5, 1) (15, 1)
(10, 0) (20, 0)

(7.5,−1) (15,−1)
(3.5,−0.5) (7.5,−0.5)

(0, 0) (0, 0)

Table C.2: Common parameters for outdoor trajectories

Parameter Value
Polynomial Order 9 (N = 10)
Derivative Minimized 4 (snap)
Soft Constraint Weight 102

Initial Relative Stepsize 10−5

Inequality Constraint Tolerance 10−1

Random Seed 0

151

−10
−5
0
5

10
15

V
el

(m
/s

)

Outdoor Trajectory Derivatives

20 m (8 m/s)
40 m (12 m/s)
40 m (14 m/s)
40 m (17 m/s)

−10

−5

0

5

10

A
cc

(m
/s

2
)

−10

−5

0

5

10

Je
rk

(m
/s

3
)

0 2 4 6 8 10 12 14 16

Time (s)

−30
−20
−10

0
10
20

Sn
ap

(m
/s

4
)

Figure C.2: The higher order derivatives of the four figure 8 trajectories used in the
outdoor experiments.

152

Dappendix

Theoretical Comparison between
Feedback Linearization and
Feedforward Linearization

While we have examined both feedforward linearization and feedback linearization for
quadrotor controls, the choice of one or the other is unclear and relies on trial and
error.

We propose a theoretical error analysis that will provide conditions and bounds on the
relative performance improvement of feedforward linearization over feedback lineariza-
tion. The goal is to answer one or all of the following questions.

1. Under what conditions does feedforward linearization achieve lower tracking error
than feedback linearization?

2. What is the most appropriate representation of model error for carrying out this
analysis?

3. How can feedback linearization and feedforward linearization be combined to achieve
lower tracking error than either one?

This work seeks to supplement the thesis statement by providing a principled theoretical
basis and framework for control strategy selection as a function of operating parameters
and known vehicle and environment uncertainties.

D.1 Related Works

Prior theoretical work on analyzing feedforward linearization and feedback linearization
has largely focused on stability and robustness [38]. Experimental work from the same
authors has compared the two approaches using a ball and plate experiment [40] and
found that feedforward linearization achieves slightly lower tracking error and better
robustness over feedback linearization. There are few works to be found that provide
theoretical results on the relative tracking error performance difference between feedback
and feedforward linearization in the presence of model uncertainty.

In Chapter 2, we showed the differential flatness of the quadrotor and derived the
mapping T from the flat state to the state and control.

153

D.2 Outcomes

Feedback linearization computes the control α using

α = T (a, j, sdes, ψ, ψ̇, ψ̈), (D.1)

while feedforward linearization computes the control α using

α = T (aref, jref, sdes, ψref, ˙ψref, ¨ψdes), (D.2)

where sdes is as in (4.34).

D.2 Outcomes

This work seeks to achieve the following outcomes.

1. Derive conditions on model error, trajectory statistics, and system dynamics un-
der which feedforward linearization achieves lower tracking error than feedback
linearization in a meaningful and quantitative way.

2. Propose a control strategy that can leverage the above conditions to outperform
both feedback linearization and feedforward linearization in a quantitatively guar-
anteed manner.

D.3 Theory

Consider a single-input single-output system of the form

ẋ = f ∗(x) + u (D.3)

with an associated reference xref and ẋref = vref.

Define state error as

xe = x− xref (D.4)

and state cost as

xc =
1

2
x2
e. (D.5)

Evaluating the time derivative of the cost:

ẋc = xeẋe (D.6)
= xe(ẋ− vref) (D.7)
= xe(f

∗(x) + u− vref) (D.8)

Now let’s consider controllers of the form

u = −kxe + vref − f(z) (D.9)

154

D.3 Theory

where z is a stand in for either x or xref. Here f represents the best available guess of
the true system dynamics f ∗.

ẋc = xe(f
∗(x)− kxe − f(z)) (D.10)

= −kx2
e + xe(f

∗(x)− f(z)) (D.11)
= −2kxc + xe(f

∗(x)− f(z)) (D.12)

We consider two different controllers: feedback linearization (FB) and feedforward lin-
earization (FF). FB uses the true state to negate the dynamics, while FF uses the
reference state.

zFB = x (D.13)
zFF = xref (D.14)

D.3.1 Cost Analysis

Plugging each control law into the time-derivative of the cost (D.12) we get

ẋFB
c = −2kxc + xe(f

∗(x)− f(x)) (D.15)

ẋFF
c = −2kxc + xe(f

∗(x)− f(xref)) (D.16)

To analyze the control performance of feedback linearization (FB) relative to feedforward
linearization (FF), we compute the difference in the time-derivative of the cost, at a fixed
xe and thus a fixed x.

ẋFB
c − ẋFF

c = xe (f(xref)− f(x)) (D.17)

Interestingly, the difference in performance only depends on the estimated system model
f and not on the true system model f ∗. We can see that FB performs worse (has a
greater time derivative of the cost than FF) when xe and f(xref)− f(x) have the same
sign. For example, if f is a decreasing function, then FF performs better.

Another thing to note, is that one can make FF arbitrarily better than FB (and vice-
versa) by choosing f . However, such a choice is likely to make the control performance
arbitrary low.

In some sense, the condition that f is a decreasing function is enforcing that the system
under the estimated model is stable in the no-control case, suggesting that FF should
be preferred in those situations.

D.3.2 Local Analysis

We wish to analyze the behavior of the system under model mismatch, when starting
with zero error. That is, the initial conditions are such that x = xref and thus xe = xc =
0.

155

D.3 Theory

We first introduce a variable representing the “dynamics mismatch” ed.

ed = f ∗(x)− f(z) (D.18)

Here, z is stand-in for either x, corresponding to the feedback linearization controller,
or xref, corresponding to the feedforward linearization controller.

Applying (D.18) to (D.12),

ẋc = −2kxc + xeed (D.19)

We see that at xc = 0, the first derivative of the cost is also zero. We differentiate
again.

ẍc = −2kẋc + ẋeed + xeėd (D.20)

Computing ẋe in terms of ed, we get

ẋe = ed − kxe (D.21)

Thus the second derivative of the cost at xe = 0 is

ẍc(x = xref) = e2d (D.22)

We see that as long as there is model mismatch, i.e. ed ̸= 0, the error will begin to
grow. However, since x = xref, eFB

d = eFF
d , implying that both FB and FF have the same

second derivative of the cost at the start. We cannot determine which control strategy
accumulates more error using (D.22).

We differentiate (D.20) to get

x(3)
c = −2kẍc + ẍeed + ẋeėd + ẋeėd + xeëd (D.23)

= −2kẍc + ẍeed + 2ẋeėd + xeëd (D.24)

Evaluating (D.24) at x = xref, we get

x(3)
c (x = xref) = −2ke2d + (ėd − kẋe)ed + 2edėd (D.25)

= −2ke2d + 3edėd − ke2d (D.26)
= 3(edėd − ke2d) (D.27)

Now, we compute ėd for both FB and FF, at x = xref.

ėd = f ∗
x ẋ− fxż (D.28)

ėFB
d = f ∗

x(f
∗ − kxe + vref − f)− fx(f

∗ − kxe + vref − f) (D.29)
= (f ∗

x − fx)(ed + vref) (D.30)

ėFF
d = f ∗

x(f
∗ − kxe + vref − f)− fxvref (D.31)

= f ∗
xed + (f ∗

x − fx)vref (D.32)

156

D.3 Theory

We compute the difference in the third derivative of the cost between FB and FF.

x(3),FB
c − x(3),FF

c = 3ed(ė
FB
d − ėFF

d) (D.33)
= 3ed(−fxed) (D.34)
= −3fxe

2
d (D.35)

We note that when FB has a smaller third derivative of the cost, FB’s error accumulates
slower than FF. This occurs when fx > 0, i.e. when the gradient of the estimated model
is positive. On the other hand, when fx < 0, FF will accumulate error slower than
FB.

157

Bibliography

[1] Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehicular dynamics,
with application to modeling helicopters. Proceedings of the 18th International
Conference on Neural Information Processing Systems, NIPS’05, pp. 1–8. 2005. (see
page: 42)

[2] Markus W. Achtelik, Simon Lynen, Margarita Chli, and Roland Siegwart. Inversion
based direct position control and trajectory following for micro aerial vehicles. 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
2933–2939. 2013. (see page: 59)

[3] Adeel Akhtar, Steven L. Waslander, and Christopher Nielsen. Path following for
a quadrotor using dynamic extension and transverse feedback linearization. 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 3551–3556. 2012.
(see page: 59)

[4] Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering operation of
Robots by learning. In Journal of Robotic Systems, vol. 1(2):123–140, 1984. (see
page: 76)

[5] Anil Aswani, Humberto Gonzalez, S. Shankar Sastry, and Claire Tomlin. Prov-
ably safe and robust learning-based model predictive control. In Automatica,
vol. 49(5):1216–1226, 2013. (see pages: 34, 42)

[6] Sreeram V. Balakrishnan. Fast incremental adaptation using maximum likelihood
regression and stochastic gradient descent. INTERSPEECH. 2003. (see page: 42)

[7] Moses Bangura and Robert Mahony. Nonlinear dynamic modeling for high
performance control of a quadrotor. Australasian conference on robotics and
automation, pp. 1–10. 2012. (see page: 41)

[8] Sanjay P. Bhat and Dennis S. Bernstein. A topological obstruction to continuous
global stabilization of rotational motion and the unwinding phenomenon. In Systems
& Control Letters, vol. 39(1):63–70, 2000. (see page: 65)

[9] Karen Bodie, Maximilian Brunner, Michael Pantic, Stefan Walser, Patrick Pfändler,
et al. An Omnidirectional Aerial Manipulation Platform for Contact-Based
Inspection. Robotics: Science and Systems XV. 2019. (see pages: 12, 57)

[10] Karen Bodie, Zachary Taylor, Mina Kamel, and Roland Siegwart. Towards Efficient
Full Pose Omnidirectionality with Overactuated MAVs. Proceedings of the 2018
International Symposium on Experimental Robotics (ISER), vol. 11, pp. 85–95. 2020.
(see page: 21)

158

https://dl.acm.org/citation.cfm?id=2976248.2976249
https://dl.acm.org/citation.cfm?id=2976248.2976249
https://ieeexplore.ieee.org/document/6696772/
https://ieeexplore.ieee.org/document/6696772/
https://ieeexplore.ieee.org/document/6425945/
https://ieeexplore.ieee.org/document/6425945/
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620010203
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620010203
http://www.sciencedirect.com/science/article/pii/S0005109813000678
http://www.sciencedirect.com/science/article/pii/S0005109813000678
https://pdfs.semanticscholar.org/ffc2/422d108b11cb8f0e947cf0f8b92c6f7607b5.pdf
https://pdfs.semanticscholar.org/ffc2/422d108b11cb8f0e947cf0f8b92c6f7607b5.pdf
https://www.araa.asn.au/acra/acra2012/papers/pap121.pdf
https://www.araa.asn.au/acra/acra2012/papers/pap121.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0167691199000900
https://linkinghub.elsevier.com/retrieve/pii/S0167691199000900
https://arxiv.org/abs/1905.03502
https://arxiv.org/abs/1905.03502
https://link.springer.com/10.1007/978-3-030-33950-0_8
https://link.springer.com/10.1007/978-3-030-33950-0_8

Bibliography

[11] Rogerio Bonatti, Yanfu Zhang, Sanjiban Choudhury, Wenshan Wang, and Sebastian
Scherer. Autonomous Drone Cinematographer: Using Artistic Principles to Create
Smooth, Safe, Occlusion-Free Trajectories for Aerial Filming. Proceedings of the
2018 International Symposium on Experimental Robotics (ISER), vol. 11, pp. 119–
129. 2020. (see page: 12)

[12] Dario Brescianini and Raffaello D’Andrea. Tilt-Prioritized Quadrocopter Attitude
Control. In IEEE Transactions on Control Systems Technology, vol. 28(2):376–387,
2020. (see pages: 70, 145, and 146)

[13] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Nonlinear Quadrocopter
Attitude Control: Technical Report. Technical report, ETH Zurich, 2013. (see
pages: 33, 142, and 146)

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
et al. Language Models are Few-Shot Learners. Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901. 2020. (see page: 118)

[15] Michael Burri, Michael Bloesch, Dominik Schindler, Igor Gilitschenski, Zachary
Taylor, et al. Generalized Information Filtering for MAV Parameter Estimation.
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3124–3130. 2016. (see page: 41)

[16] Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W. Achtelik, and Roland
Siegwart. Maximum Likelihood Parameter Identification for MAVs. 2016 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4297–4303.
2016. (see page: 41)

[17] Dong Eui Chang and Yongsoon Eun. Global Chartwise Feedback Linearization of
the Quadcopter With a Thrust Positivity Preserving Dynamic Extension. In IEEE
Transactions on Automatic Control, vol. 62(9):4747–4752, 2017. (see page: 59)

[18] Vishnu R. Desaraju. Safe, Efficient, and Robust Predictive Control of Constrained
Nonlinear Systems . Doctoral, Carnegie Mellon University, 2017. (see pages: 41, 42)

[19] Vishnu R Desaraju, Alexander E Spitzer, Cormac O’Meadhra, Lauren Lieu, and
Nathan Michael. Leveraging experience for robust, adaptive nonlinear MPC on
computationally constrained systems with time-varying state uncertainty. In The
International Journal of Robotics Research, vol. 37(13-14):1690–1712, 2018. (see
pages: 34, 37)

[20] Alain Droniou, Serena Ivaldi, Vincent Padois, and Olivier Sigaud. Autonomous
online learning of velocity kinematics on the iCub: a comparative study. 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3577–3582. 2012. (see page: 42)

[21] Matthias Faessler, Davide Falanga, and Davide Scaramuzza. Thrust Mixing,
Saturation, and Body-Rate Control for Accurate Aggressive Quadrotor Flight. In
IEEE Robotics and Automation Letters, vol. 2(2):476–482, 2017. (see pages: 32, 41,
and 60)

159

http://link.springer.com/10.1007/978-3-030-33950-0_11
http://link.springer.com/10.1007/978-3-030-33950-0_11
https://ieeexplore.ieee.org/document/8556372/
https://ieeexplore.ieee.org/document/8556372/
https://hdl.handle.net/20.500.11850/154099
https://hdl.handle.net/20.500.11850/154099
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://ieeexplore.ieee.org/document/7759483/
https://ieeexplore.ieee.org/document/7487627
https://ieeexplore.ieee.org/document/7879259/
https://ieeexplore.ieee.org/document/7879259/
https://kilthub.cmu.edu/articles/Safe_Efficient_and_Robust_Predictive_Control_of_Constrained_Nonlinear_Systems/6721379
https://kilthub.cmu.edu/articles/Safe_Efficient_and_Robust_Predictive_Control_of_Constrained_Nonlinear_Systems/6721379
http://journals.sagepub.com/doi/10.1177/0278364918793717
http://journals.sagepub.com/doi/10.1177/0278364918793717
https://ieeexplore.ieee.org/document/6385674
https://ieeexplore.ieee.org/document/6385674
https://ieeexplore.ieee.org/document/7784809
https://ieeexplore.ieee.org/document/7784809

Bibliography

[22] Matthias Faessler, Flavio Fontana, Christian Forster, and Davide Scaramuzza.
Automatic re-initialization and failure recovery for aggressive flight with a
monocular vision-based quadrotor. 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1722–1729. 2015. (see pages: 142, 146)

[23] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential Flatness of
Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed
Trajectories. In IEEE Robotics and Automation Letters, vol. 3(2):620–626, 2018.
(see pages: 22, 30, 42, and 43)

[24] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. PAMPC:
Perception-Aware Model Predictive Control for Quadrotors. 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. 2018.
(see page: 34)

[25] Jeff Ferrin, Robert Leishman, Randy Beard, and Tim McLain. Differential
Flatness Based Control of a Rotorcraft For Aggressive Maneuvers. 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2688–2693.
2011. (see page: 42)

[26] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. On Differentially Flat Nonlinear
Systems. In IFAC Proceedings Volumes, vol. 25(13):159–163, 1992. (see page: 21)

[27] Juan Manuel Florez, Delphine Bellot, and Guillaume Morel. LWPR-Model Based
Predictive Force Control for Serial Comanipulation in Beating Heart Surgery.
2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), pp. 320–326. 2011. (see page: 42)

[28] Simone Formentin and Marco Lovera. Flatness-based control of a quadrotor
helicopter via feedforward linearization. 2011 50th IEEE Conference on Decision
and Control and European Control Conference, pp. 6171–6176. 2011. (see page: 30)

[29] Emil Fresk and George Nikolakopoulos. Full Quaternion Based Attitude Control
for a Quadrotor. 2013 European Control Conference (ECC), pp. 3864–3869. 2013.
(see pages: 70, 144, and 146)

[30] Oliver Fritsch, Paul De Monte, Michael Buhl, and Boris Lohmann. Quasi-static
Feedback Linearization for the Translational Dynamics of a Quadrotor Helicopter.
2012 American Control Conference (ACC), pp. 125–130. 2012. (see page: 30)

[31] Kanishke Gamagedara, Mahdis Bisheban, Evan Kaufman, and Taeyoung Lee.
Geometric Controls of a Quadrotor UAV with Decoupled Yaw Control. 2019
American Control Conference (ACC), pp. 3285–3290. 2019. (see pages: 142, 146)

[32] Arjan Gijsberts and Giorgio Metta. Incremental learning of robot dynamics using
random features. 2011 IEEE International Conference on Robotics and Automation
(ICRA), pp. 951–956. 2011. (see pages: 39, 42)

[33] Arjan Gijsberts and Giorgio Metta. Real-time model learning using Incremental

160

https://ieeexplore.ieee.org/document/7139420/
https://ieeexplore.ieee.org/document/7139420/
https://ieeexplore.ieee.org/document/8118153
https://ieeexplore.ieee.org/document/8118153
https://ieeexplore.ieee.org/document/8118153
https://ieeexplore.ieee.org/document/8593739/
https://ieeexplore.ieee.org/document/8593739/
https://ieeexplore.ieee.org/document/6095098/
https://ieeexplore.ieee.org/document/6095098/
https://linkinghub.elsevier.com/retrieve/pii/S1474667017522752
https://linkinghub.elsevier.com/retrieve/pii/S1474667017522752
http://ieeexplore.ieee.org/document/6027055/
http://ieeexplore.ieee.org/document/6027055/
https://ieeexplore.ieee.org/document/6160828/
https://ieeexplore.ieee.org/document/6160828/
https://ieeexplore.ieee.org/document/6669617/
https://ieeexplore.ieee.org/document/6669617/
https://ieeexplore.ieee.org/document/6314682/
https://ieeexplore.ieee.org/document/6314682/
https://ieeexplore.ieee.org/document/8815189
https://ieeexplore.ieee.org/document/5980191/
https://ieeexplore.ieee.org/document/5980191/
https://www.sciencedirect.com/science/article/pii/S0893608012002249
https://www.sciencedirect.com/science/article/pii/S0893608012002249

Bibliography

Sparse Spectrum Gaussian Process Regression. In Neural Networks, vol. 41:59–69,
2013. (see pages: 38, 39, 42, and 68)

[34] Farhad Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric Nonlinear PID
Control of a Quadrotor UAV on SE(3). 2013 European Control Conference (ECC),
pp. 3845–3850. 2013. (see pages: 33, 143, and 146)

[35] Melissa Greeff and Angela P. Schoellig. Flatness-Based Model Predictive Control
for Quadrotor Trajectory Tracking. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 6740–6745. 2018. (see page: 34)

[36] Melissa Greeff and Angela P. Schoellig. Exploiting Differential Flatness for Robust
Learning-Based Tracking Control Using Gaussian Processes. In IEEE Control
Systems Letters, vol. 5(4):1121–1126, 2021. (see page: 60)

[37] Daniel H Grollman and Odest Chadwicke Jenkins. Sparse Incremental Learning for
Interactive Robot Control Policy Estimation. 2008 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3315–3320. 2008. (see page: 42)

[38] Veit Hagenmeyer. Robust nonlinear tracking control based on differential flatness .
Doctoral, University of Paris, France, 2003. (see pages: 83, 153)

[39] Veit Hagenmeyer and Emmanuel Delaleau. Exact feedforward linearization based on
differential flatness. In International Journal of Control, vol. 76(6):537–556, 2003.
(see pages: 59, 83)

[40] Veit Hagenmeyer, Stefan Streif, and Michael Zeitz. Flatness-Based Feedforward and
Feedback Linearisation of the Ball & Plate Lab Experiment. In IFAC Proceedings
Volumes, vol. 37(13):219–224, 2004. (see page: 153)

[41] Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide Scaramuzza.
Performance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadrotors. In
IEEE Robotics and Automation Letters, vol. 7(2):690–697, 2022. (see page: 117)

[42] Markus Hehn and Raffaello D’Andrea. Real-Time Trajectory Generation for
Quadrocopters. In IEEE Transactions on Robotics, vol. 31(4):877–892, 2015. (see
page: 42)

[43] J. D. Hunter. Matplotlib: A 2D graphics environment. In Computing in Science &
Engineering, vol. 9(3):90–95, 2007.

[44] Alberto Isidori. Nonlinear control systems . 1995. (see pages: 59, 60, and 61)

[45] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. 2001–. (see page: 49)

[46] Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Matthias Müller, Vladlen Koltun,
et al. Deep Drone Acrobatics. Robotics: Science and Systems XVI. 2020. (see
page: 117)

[47] T. John Koo and Shankar Sastry. Output tracking control design of a helicopter

161

https://www.sciencedirect.com/science/article/pii/S0893608012002249
https://www.sciencedirect.com/science/article/pii/S0893608012002249
https://www.sciencedirect.com/science/article/pii/S0893608012002249
https://ieeexplore.ieee.org/document/6669644
https://ieeexplore.ieee.org/document/6669644
https://ieeexplore.ieee.org/document/8594012/
https://ieeexplore.ieee.org/document/8594012/
https://ieeexplore.ieee.org/document/9140024/
https://ieeexplore.ieee.org/document/9140024/
http://ieeexplore.ieee.org/document/4543716/
http://ieeexplore.ieee.org/document/4543716/
http://d-nb.info/967057833
https://doi.org/10.1080/0020717031000089570
https://doi.org/10.1080/0020717031000089570
https://linkinghub.elsevier.com/retrieve/pii/S1474667017312260
https://linkinghub.elsevier.com/retrieve/pii/S1474667017312260
https://ieeexplore.ieee.org/abstract/document/9632352
https://ieeexplore.ieee.org/document/7128399
https://ieeexplore.ieee.org/document/7128399
https://matplotlib.org
https://doi.org/10.1007/978-1-84628-615-5
https://www.scipy.org/
https://www.scipy.org/
http://www.roboticsproceedings.org/rss16/p040.pdf
https://ieeexplore.ieee.org/document/761745/
https://ieeexplore.ieee.org/document/761745/

Bibliography

model based on approximate linearization. Proceedings of the 37th IEEE Conference
on Decision and Control (CDC), vol. 4, pp. 3635–3640. 1998. (see page: 59)

[48] Dave Kooijman, Angela P. Schoellig, and Duarte J. Antunes. Trajectory Tracking
for Quadrotors with Attitude Control on S2 × S1. 2019 18th European Control
Conference (ECC), pp. 4002–4009. 2019. (see pages: 33, 34, 142, 144, and 146)

[49] Daewon Lee, H. Jin Kim, and Shankar Sastry. Feedback Linearization vs. Adaptive
Sliding Mode Control for a Quadrotor Helicopter. In International Journal of
Control, Automation and Systems, vol. 7(3):419–428, 2009. (see pages: 12, 59)

[50] Taeyoung Lee. Exponential stability of an attitude tracking control system on SO(3)
for large-angle rotational maneuvers. In Systems & Control Letters, vol. 61(1):231–
237, 2012. (see pages: 32, 143, and 146)

[51] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. Geometric tracking control
of a quadrotor UAV on SE(3). 49th IEEE Conference on Decision and Control
(CDC), pp. 5420–5425. 2010. (see pages: 12, 143, and 146)

[52] Ian Lenz, Ross Knepper, and Ashutosh Saxena. DeepMPC: Learning Deep Latent
Features for Model Predictive Control. Robotics: Science and Systems XI. 2015.
(see page: 34)

[53] Qiyang Li, Jingxing Qian, Zining Zhu, Xuchan Bao, Mohamed K. Helwa, et al. Deep
Neural Networks for Improved, Impromptu Trajectory Tracking of Quadrotors. 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 5183–
5189. 2017. (see page: 41)

[54] Weiwei Li and Emanuel Todorov. Iterative Linear Quadratic Regulator Design
for Nonlinear Biological Movement Systems. Proceedings of the First International
Conference on Informatics in Control, Automation and Robotics, pp. 222–229. 2004.
(see pages: 34, 42)

[55] Sergei Lupashin, Markus Hehn, Mark W. Mueller, Angela P. Schoellig, Michael
Sherback, et al. A platform for aerial robotics research and demonstration: The
Flying Machine Arena. In Mechatronics, vol. 24(1):41–54, 2014. (see page: 22)

[56] Sergei Lupashin, Angela Schöllig, Michael Sherback, and Raffaello D’Andrea. A
simple learning strategy for high-speed quadrocopter multi-flips. 2010 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1642–1648.
2010. (see page: 41)

[57] Zachary Manchester and Scott Kuindersma. DIRTREL: Robust trajectory
optimization with ellipsoidal disturbances and LQR feedback. Robotics: Science
and Systems (RSS). 2017. (see pages: 12, 42)

[58] Andrew McHutchon and Carl Edward Rasmussen. Gaussian Process Training with
Input Noise. Advances in Neural Information Processing Systems, vol. 24. 2011.
(see page: 116)

162

https://ieeexplore.ieee.org/document/761745/
https://ieeexplore.ieee.org/document/761745/
https://ieeexplore.ieee.org/document/761745/
https://ieeexplore.ieee.org/document/8795755
https://ieeexplore.ieee.org/document/8795755
https://link.springer.com/10.1007/s12555-009-0311-8
https://link.springer.com/10.1007/s12555-009-0311-8
https://www.sciencedirect.com/science/article/pii/S0167691111002829
https://www.sciencedirect.com/science/article/pii/S0167691111002829
https://ieeexplore.ieee.org/document/5717652
https://ieeexplore.ieee.org/document/5717652
http://www.roboticsproceedings.org/rss11/p12.pdf
http://www.roboticsproceedings.org/rss11/p12.pdf
https://ieeexplore.ieee.org/document/7989607
https://ieeexplore.ieee.org/document/7989607
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0001143902220229
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0001143902220229
http://linkinghub.elsevier.com/retrieve/pii/S0957415813002262
http://linkinghub.elsevier.com/retrieve/pii/S0957415813002262
https://ieeexplore.ieee.org/document/5509452/
https://ieeexplore.ieee.org/document/5509452/
https://doi.org/10.15607/RSS.2017.XIII.057
https://doi.org/10.15607/RSS.2017.XIII.057
https://proceedings.neurips.cc/paper/2011/file/a8e864d04c95572d1aece099af852d0a-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/a8e864d04c95572d1aece099af852d0a-Paper.pdf

Bibliography

[59] Christopher D. McKinnon and Angela P. Schoellig. Learning multimodal models
for robot dynamics online with a mixture of gaussian process experts. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 322–328, 2017.
(see page: 42)

[60] Daniel Mellinger. Trajectory Generation and Control for Quadrotors . Doctoral,
University of Pennsylvania, 2012. (see page: 41)

[61] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. 2011 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2520–2525. 2011. (see pages: 22, 30, 41, 42, 143, and 146)

[62] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The
GRASP Multiple Micro-UAV Testbed. In IEEE Robotics & Automation Magazine,
vol. 17(3):56–65, 2010. (see page: 62)

[63] Buddy Michini and Jonathan How. L1 Adaptive Control for Indoor Autonomous
Vehicles: Design Process and Flight Testing. Proceeding of AIAA Guidance,
Navigation, and Control Conference, pp. 5754–5768. 2009. (see pages: 13, 35, and 73)

[64] V. Mistler, A. Benallegue, and N.K. M’Sirdi. Exact linearization and noninteracting
control of a 4 rotors helicopter via dynamic feedback. Proceedings of the 10th IEEE
International Workshop on Robot and Human Interactive Communication. ROMAN
2001, pp. 586–593. 2001. (see page: 59)

[65] Benjamin Morrell, Marc Rigter, Gene Merewether, Robert Reid, Rohan Thakker,
et al. Differential Flatness Transformations for Aggressive Quadrotor Flight. 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 5204–
5210. 2018. (see pages: 41, 42)

[66] Mark Wilfried Mueller. Multicopter attitude control for recovery from large
disturbances. In arXiv [cs], 2018. (see pages: 142, 143, 144, 145, and 146)

[67] Richard M. Murray, Muruhan Rathinam, and Willem Sluis. Differential Flatness of
Mechanical Control Systems: A Catalog of Prototype Systems. Proceedings of the
1995 ASME International Congress and Exposition, p. 9. 1995. (see page: 22)

[68] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey. In
Cognitive Processing, vol. 12(4):319–340, 2011. (see page: 41)

[69] Barza Nisar, Philipp Foehn, Davide Falanga, and Davide Scaramuzza. VIMO:
Simultaneous Visual Inertial Model-Based Odometry and Force Estimation. In
IEEE Robotics and Automation Letters, vol. 4(3):2785–2792, 2019. (see page: 117)

[70] Sammy Omari, Pascal Gohl, Michael Burri, Markus Achtelik, and Roland Siegwart.
Visual Industrial Inspection Using Aerial Robots. Proceedings of the 2014 3rd
International Conference on Applied Robotics for the Power Industry, pp. 1–5. 2014.
(see page: 12)

[71] Sophocles J. Orfanidis. Introduction to signal processing . Prentice Hall signal
processing series. 1996. (see page: 124)

163

https://ieeexplore.ieee.org/document/7989041
https://ieeexplore.ieee.org/document/7989041
https://repository.upenn.edu/edissertations/547
https://ieeexplore.ieee.org/document/5980409/
https://ieeexplore.ieee.org/document/5980409/
https://ieeexplore.ieee.org/document/5569026/
https://ieeexplore.ieee.org/document/5569026/
http://arc.aiaa.org/doi/pdf/10.2514/6.2009-5754
http://arc.aiaa.org/doi/pdf/10.2514/6.2009-5754
https://ieeexplore.ieee.org/document/981968/
https://ieeexplore.ieee.org/document/981968/
https://ieeexplore.ieee.org/document/8460838/
https://arxiv.org/abs/1802.09143
https://arxiv.org/abs/1802.09143
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3964
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3964
http://link.springer.com/10.1007/s10339-011-0404-1
https://ieeexplore.ieee.org/document/8721075
https://ieeexplore.ieee.org/document/8721075
http://ieeexplore.ieee.org/document/7030056/
https://www.ece.rutgers.edu/~orfanidi/intro2sp/

Bibliography

[72] Alberto Pretto, Stephanie Aravecchia, Wolfram Burgard, Nived Chebrolu, Christian
Dornhege, et al. Building an Aerial-Ground Robotics System for Precision Farming:
An Adaptable Solution. In IEEE Robotics & Automation Magazine, 2020. (see
page: 12)

[73] Thomas Raffler, Jian Wang, and Florian Holzapfel. Path Generation and Control
for Unmanned Multirotor Vehicles Using Nonlinear Dynamic Inversion and Pseudo
Control Hedging. In IFAC Proceedings Volumes, vol. 46(19):194–199, 2013. (see
page: 59)

[74] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines.
Advances in Neural Information Processing Systems, pp. 1177–1184. 2007. (see
pages: 38, 42, and 69)

[75] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for
machine learning . Adaptive computation and machine learning. 2006. (see page: 37)

[76] Nathan Ratliff, Franziska Meier, Daniel Kappler, and Stefan Schaal. DOOMED:
Direct Online Optimization of Modeling Errors in Dynamics. In Big Data,
vol. 4(4):253–268, 2016. (see page: 117)

[77] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for
Aggressive Quadrotor Flight in Dense Indoor Environments. Robotics Research, vol.
114, pp. 649–666. 2016. (see pages: 12, 104, and 150)

[78] G. Rivera and O. Sawodny. Flatness-Based Tracking Control and Nonlinear
Observer for a Micro Aerial Quadcopter. AIP Conference Proceedings, vol. 1281,
pp. 386–389. 2010. (see page: 42)

[79] Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar. Scalable
Techniques from Nonparametric Statistics for Real Time Robot Learning. In Applied
Intelligence, vol. 17(1):49–60, 2002. (see page: 42)

[80] Alexander Spitzer and Nathan Michael. Inverting Learned Dynamics Models for
Aggressive Multirotor Control. Robotics: Science and Systems XV. 2019. (see
pages: 41, 59, 60, 74, 88, and 92)

[81] Alexander Spitzer and Nathan Michael. Rotational Error Metrics for Quadrotor
Control. In arXiv [cs], 2020. (see page: 142)

[82] Alexander Spitzer and Nathan Michael. Feedback Linearization for Quadrotors
with a Learned Acceleration Error Model. 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6042–6048. 2021. (see page: 59)

[83] James Svacha, Kartik Mohta, and Vijay Kumar. Improving Quadrotor Trajectory
Tracking by Compensating for Aerodynamic Effects. 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 860–866. 2017. (see page: 41)

[84] Wennie Tabib, Kshitij Goel, John Yao, Curtis Boirum, and Nathan Michael.
Autonomous Cave Surveying With an Aerial Robot. In IEEE Transactions on
Robotics, pp. 1–17, 2021. (see pages: 12, 57)

164

https://ieeexplore.ieee.org/document/9177181/
https://ieeexplore.ieee.org/document/9177181/
https://www.sciencedirect.com/science/article/pii/S1474667015363217
https://www.sciencedirect.com/science/article/pii/S1474667015363217
https://www.sciencedirect.com/science/article/pii/S1474667015363217
https://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
https://arxiv.org/abs/1608.00309
https://arxiv.org/abs/1608.00309
http://link.springer.com/10.1007/978-3-319-28872-7_37
http://link.springer.com/10.1007/978-3-319-28872-7_37
https://aip.scitation.org/doi/10.1063/1.3498483
https://aip.scitation.org/doi/10.1063/1.3498483
http://link.springer.com/10.1023/A:1015727715131
http://link.springer.com/10.1023/A:1015727715131
http://www.roboticsproceedings.org/rss15/p65.pdf
http://www.roboticsproceedings.org/rss15/p65.pdf
https://arxiv.org/abs/2011.11909
https://arxiv.org/abs/2011.11909
https://ieeexplore.ieee.org/document/9561708
https://ieeexplore.ieee.org/document/9561708
http://ieeexplore.ieee.org/document/7991501/
http://ieeexplore.ieee.org/document/7991501/
https://ieeexplore.ieee.org/document/9536757/

Bibliography

[85] Ezra Tal and Sertac Karaman. Accurate Tracking of Aggressive Quadrotor
Trajectories using Incremental Nonlinear Dynamic Inversion and Differential
Flatness. 2018 IEEE Conference on Decision and Control (CDC), pp. 4282–4288.
2018. (see page: 41)

[86] Guillem Torrente, Elia Kaufmann, Philipp Foehn, and Davide Scaramuzza. Data-
Driven MPC for Quadrotors. In IEEE Robotics and Automation Letters, 2021. (see
pages: 34, 42, and 43)

[87] Jonas Umlauft, Thomas Beckers, Melanie Kimmel, and Sandra Hirche. Feedback
linearization using Gaussian processes. 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 5249–5255. 2017. (see page: 60)

[88] Michiel J. Van Nieuwstadt and Richard M. Murray. Real-time trajectory generation
for differentially flat systems. In Int. J. Robust Nonlinear Control, vol. 8(11):995–
1020, 1998. (see page: 22)

[89] Arun Venkatraman, Roberto Capobianco, Lerrel Pinto, Martial Hebert, Daniele
Nardi, et al. Improved Learning of Dynamics Models for Control. 2016 International
Symposium on Experimental Robotics (ISER), Springer Proceedings in Advanced
Robotics, pp. 703–713. 2017. (see page: 116)

[90] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental Online
Learning in High Dimensions. In Neural Computation, vol. 17(12):2602–2634, 2005.
(see page: 42)

[91] Jian Wang, Thomas Bierling, Leonhard Höcht, Florian Holzapfel, Sebastian Klose,
et al. Novel Dynamic Inversion Architecture Design for Quadrocopter Control.
Advances in Aerospace Guidance, Navigation and Control, pp. 261–272. 2011. (see
pages: 59, 60)

[92] Tyler Westenbroek, David Fridovich-Keil, Eric Mazumdar, Shreyas Arora, Valmik
Prabhu, et al. Feedback Linearization for Uncertain Systems via Reinforcement
Learning. 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1364–1371. 2020. (see page: 60)

[93] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James Rehg, et al.
Information Theoretic MPC for Model-Based Reinforcement Learning. 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1714–1721.
2017. (see page: 34)

[94] A. Yeşildirek and F.L. Lewis. Feedback Linearization Using Neural Networks. In
Automatica, vol. 31(11):1659–1664, 1995. (see page: 60)

[95] Weixuan Zhang, Marco Tognon, Lionel Ott, Roland Siegwart, and Juan Nieto.
Active Model Learning using Informative Trajectories for Improved Closed-Loop
Control on Real Robots. 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4467–4473. 2021. (see page: 117)

165

https://arxiv.org/abs/1809.04048
https://arxiv.org/abs/1809.04048
https://arxiv.org/abs/1809.04048
https://arxiv.org/abs/2102.05773
https://arxiv.org/abs/2102.05773
https://ieeexplore.ieee.org/document/8264435/
https://ieeexplore.ieee.org/document/8264435/
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W/abstract
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W/abstract
https://doi.org/10.1007/978-3-319-50115-4_61
https://direct.mit.edu/neco/article/17/12/2602-2634/6982
https://direct.mit.edu/neco/article/17/12/2602-2634/6982
https://link.springer.com/10.1007/978-3-642-19817-5_21
https://ieeexplore.ieee.org/document/9197158/
https://ieeexplore.ieee.org/document/9197158/
https://ieeexplore.ieee.org/document/7989202/
https://linkinghub.elsevier.com/retrieve/pii/000510989500078B
https://ieeexplore.ieee.org/document/9560869
https://ieeexplore.ieee.org/document/9560869

	Introduction
	What is Forward Model-based Control?
	How is Tracking Error Handled?
	Challenges
	Contributions
	Outline

	Background
	Modeling
	Note on Reference Frames
	Dynamics
	Motor Modeling

	Differential Flatness
	Yaw Definitions
	Flat Output to States and Control Inputs
	Computing Orientation and Thrust
	Computing Angular Velocity
	Computing Angular Acceleration
	Linear System Solution for Body Axis Rates

	Feedback Control
	Cascaded Control Architecture
	Attitude Control
	Rotational Error Functions

	Model Predictive Controllers

	Disturbance Compensation
	Acceleration Disturbance Observer
	Angular Acceleration Disturbance Observer

	Linear Regression for Model Learning
	Linear Regression
	Linear Regression with Nonlinear Features
	Incremental Linear Regression

	Inverting Learned Dynamics Models
	Introduction
	Motivation
	Related Works

	Method
	Problem Statement
	Input-independent Error Compensation
	Input-dependent Error Compensation
	Model Learning

	Experiments
	Simulation
	Hardware
	Platform & Setup
	Model Learning
	Results

	Conclusion

	Model Learning for Feedback Linearization
	Introduction
	Related Works
	Method
	Feedback Linearization with Dynamic Extension
	Feedback Linearization with Thrust Delay and Disturbance Model
	Computing Thrust Control Input
	Computing Angular Acceleration Control Input

	Gain Matching
	Acceleration Model Learning

	Experiments
	Position and Yaw Step Response
	Control Input Delay
	Learned Acceleration Error Model
	Iterative Learning Control Application

	Conclusion

	Model Learning for Quadrotor Attitude Control
	Introduction
	Problem
	Challenges
	Data
	Regression

	State of the Art
	Requirements

	Modeling
	Rotor Angular Momentum
	Control with Disturbance Model
	Model Learning

	Experiments
	Baseline System Evaluation
	Filter with Acceleration Disturbance Compensation

	Flying in a Wind Field with Cardboard Plate
	AAD Compensation with Acceleration Model Learning

	Flying with a Cardboard Plate
	Feedforward Linearization for AAD Model

	Conclusion

	Model Learning for High Speed Outdoor Flight
	Quadrotor
	State Estimation
	Safety
	Experiments
	Trajectories
	Results
	Learned Model Analysis
	Conclusion

	Conclusion
	Summary of Contributions
	Limitations and Future Work
	Learning Models
	Using Learned Models
	Future

	Firmware and Attitude Estimation
	System
	Sensing
	IMU Logging
	Notch Filtering
	Implementation
	Results
	Implications

	Gyro Bias Estimation
	Kalman Filter for Disturbance Estimation
	Process Model
	Observation Model
	Algorithm
	Parameters

	Linear Acceleration Compensation

	Rotational Error Metric Case Studies
	Introduction
	Full Rotation Metrics
	Thrust Vector – Yaw Decomposition Metrics
	Simulation Case Studies
	Direction Change
	Step with Yaw Error
	Diagonal Step

	Discussion

	Outdoor Trajectory Generation Details
	Feedback Linearization vs Feedforward Linearization
	Related Works
	Outcomes
	Theory
	Cost Analysis
	Local Analysis

