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How can we follow trajectories accurately 1. Correct acceleration model by learning to Accounting for learned acceleration model
with a multirotor in the presence of predict venicle accelerations. dynamics by correcting orientation references
disturbances and unmodeled dynamics? 2. Solve acceleration ba.lance for thrust vector. improves tracking performance.
3. Invert learned dynamics model to correct , )
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Traditional multirotor control strategies convert smooth function of state and input . @
trajectories into thrust, orientation, angular velocity, and angular features: B —
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angular velocity are used as setpoints in the orientation feedback
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controller, while the thrust and angular acceleration are directly Simulation: ¢(z,u) = (v @ sin(f) u) Dynamic inversion is Acceleration balance is required
used as control inputs to the vehicle. This transformation uses a Hardware: o¢(x,u) = (& u) required for perfect tracking for perfect tracking in the
simple acceleration model that only considers acceleration from in the presence of drag. presence of input-dependent
the motors and gravity. Since this model is often incomplete and Acceleration Balance disturbances.
ll:: ;c(:;.::’:)ee,:fr:)engz:lir:tseucifce?:roI Inputs are not accurate anc Accurate control inputs require solving the acceleration Hardware
equation numerically for the thrust vector u when there is a We test our approach in hardware on a 750 g quadrotor inside
Acceleration Model dependence on the control input. a motion capture arena.
, a=u-+g indust. @ = U+ G T aerr(uy t) Line traiectorv: 6.3 m / 2 30% reduction in tracking error
Smooth Trajectory ——pw Control Inputs This is solved efficiently by warm starting the Newton-Raphson x m‘/ E e elecon TosoR BROn S
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